Cargando…
Multicenter Computer-Aided Diagnosis for Lymph Nodes Using Unsupervised Domain-Adaptation Networks Based on Cross-Domain Confounding Representations
To achieve the robust high-performance computer-aided diagnosis systems for lymph nodes, CT images may be typically collected from multicenter data, which cause the isolated performance of the model based on different data source centers. The variability adaptation problem of lymph node data which i...
Autores principales: | Qin, RuoXi, Zhang, Huike, Jiang, LingYun, Qiao, Kai, Hai, Jinjin, Chen, Jian, Xu, Junling, Shi, Dapeng, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239501/ https://www.ncbi.nlm.nih.gov/pubmed/32454880 http://dx.doi.org/10.1155/2020/3709873 |
Ejemplares similares
-
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
GANana: Unsupervised Domain Adaptation for Volumetric Regression of Fruit
por: Hartley, Zane K. J., et al.
Publicado: (2021) -
Unsupervised Exemplar-Domain Aware Image-to-Image Translation
por: Fu, Yuanbin, et al.
Publicado: (2021) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019) -
Unsupervised multi-source domain adaptation with no observable source data
por: Jeon, Hyunsik, et al.
Publicado: (2021)