Cargando…

Partial Scanning Transmission Electron Microscopy with Deep Learning

Compressed sensing algorithms are used to decrease electron microscope scan time and electron beam exposure with minimal information loss. Following successful applications of deep learning to compressed sensing, we have developed a two-stage multiscale generative adversarial neural network to compl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ede, Jeffrey M., Beanland, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239858/
https://www.ncbi.nlm.nih.gov/pubmed/32433582
http://dx.doi.org/10.1038/s41598-020-65261-0
Descripción
Sumario:Compressed sensing algorithms are used to decrease electron microscope scan time and electron beam exposure with minimal information loss. Following successful applications of deep learning to compressed sensing, we have developed a two-stage multiscale generative adversarial neural network to complete realistic 512 × 512 scanning transmission electron micrographs from spiral, jittered gridlike, and other partial scans. For spiral scans and mean squared error based pre-training, this enables electron beam coverage to be decreased by 17.9× with a 3.8% test set root mean squared intensity error, and by 87.0× with a 6.2% error. Our generator networks are trained on partial scans created from a new dataset of 16227 scanning transmission electron micrographs. High performance is achieved with adaptive learning rate clipping of loss spikes and an auxiliary trainer network. Our source code, new dataset, and pre-trained models are publicly available.