Cargando…
Tissue Responses to Shiga Toxin in Human Intestinal Organoids
BACKGROUND & AIMS: Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240222/ https://www.ncbi.nlm.nih.gov/pubmed/32145469 http://dx.doi.org/10.1016/j.jcmgh.2020.02.006 |
_version_ | 1783536835760226304 |
---|---|
author | Pradhan, Suman Karve, Sayali S. Weiss, Alison A. Hawkins, Jennifer Poling, Holly M. Helmrath, Michael A. Wells, James M. McCauley, Heather A. |
author_facet | Pradhan, Suman Karve, Sayali S. Weiss, Alison A. Hawkins, Jennifer Poling, Holly M. Helmrath, Michael A. Wells, James M. McCauley, Heather A. |
author_sort | Pradhan, Suman |
collection | PubMed |
description | BACKGROUND & AIMS: Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx, and human cells in culture fail to model the complex tissue responses to intestinal injury. We used genetically identical, human stem cell–derived intestinal tissues of varying complexity to study Stx toxicity in vitro and in vivo. METHODS: In vitro susceptibility to apical or basolateral exposure to Stx was assessed using human intestinal organoids (HIOs) derived from embryonic stem cells, or enteroids derived from multipotent intestinal stem cells. HIOs contain a lumen, with a single layer of differentiated epithelium surrounded by mesenchymal cells. Enteroids only contain epithelium. In vivo susceptibility was assessed using HIOs, with or without an enteric nervous system, transplanted into mice. RESULTS: Stx induced necrosis and apoptotic death in both epithelial and mesenchymal cells. Responses that require protein synthesis (cellular proliferation and wound repair) also were observed. Epithelial barrier function was maintained even after epithelial cell death was seen, and apical to basolateral translocation of Stx was seen. Tissue cross-talk, in which mesenchymal cell damage caused epithelial cell damage, was observed. Stx induced mesenchymal expression of the epithelial marker E-cadherin, the initial step in mesenchymal–epithelial transition. In vivo responses of HIO transplants injected with Stx mirrored those seen in vitro. CONCLUSIONS: Intestinal tissue responses to protein synthesis inhibition by Stx are complex. Organoid models allow for an unprecedented examination of human tissue responses to a deadly toxin. |
format | Online Article Text |
id | pubmed-7240222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-72402222020-05-26 Tissue Responses to Shiga Toxin in Human Intestinal Organoids Pradhan, Suman Karve, Sayali S. Weiss, Alison A. Hawkins, Jennifer Poling, Holly M. Helmrath, Michael A. Wells, James M. McCauley, Heather A. Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx, and human cells in culture fail to model the complex tissue responses to intestinal injury. We used genetically identical, human stem cell–derived intestinal tissues of varying complexity to study Stx toxicity in vitro and in vivo. METHODS: In vitro susceptibility to apical or basolateral exposure to Stx was assessed using human intestinal organoids (HIOs) derived from embryonic stem cells, or enteroids derived from multipotent intestinal stem cells. HIOs contain a lumen, with a single layer of differentiated epithelium surrounded by mesenchymal cells. Enteroids only contain epithelium. In vivo susceptibility was assessed using HIOs, with or without an enteric nervous system, transplanted into mice. RESULTS: Stx induced necrosis and apoptotic death in both epithelial and mesenchymal cells. Responses that require protein synthesis (cellular proliferation and wound repair) also were observed. Epithelial barrier function was maintained even after epithelial cell death was seen, and apical to basolateral translocation of Stx was seen. Tissue cross-talk, in which mesenchymal cell damage caused epithelial cell damage, was observed. Stx induced mesenchymal expression of the epithelial marker E-cadherin, the initial step in mesenchymal–epithelial transition. In vivo responses of HIO transplants injected with Stx mirrored those seen in vitro. CONCLUSIONS: Intestinal tissue responses to protein synthesis inhibition by Stx are complex. Organoid models allow for an unprecedented examination of human tissue responses to a deadly toxin. Elsevier 2020-03-05 /pmc/articles/PMC7240222/ /pubmed/32145469 http://dx.doi.org/10.1016/j.jcmgh.2020.02.006 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Pradhan, Suman Karve, Sayali S. Weiss, Alison A. Hawkins, Jennifer Poling, Holly M. Helmrath, Michael A. Wells, James M. McCauley, Heather A. Tissue Responses to Shiga Toxin in Human Intestinal Organoids |
title | Tissue Responses to Shiga Toxin in Human Intestinal Organoids |
title_full | Tissue Responses to Shiga Toxin in Human Intestinal Organoids |
title_fullStr | Tissue Responses to Shiga Toxin in Human Intestinal Organoids |
title_full_unstemmed | Tissue Responses to Shiga Toxin in Human Intestinal Organoids |
title_short | Tissue Responses to Shiga Toxin in Human Intestinal Organoids |
title_sort | tissue responses to shiga toxin in human intestinal organoids |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240222/ https://www.ncbi.nlm.nih.gov/pubmed/32145469 http://dx.doi.org/10.1016/j.jcmgh.2020.02.006 |
work_keys_str_mv | AT pradhansuman tissueresponsestoshigatoxininhumanintestinalorganoids AT karvesayalis tissueresponsestoshigatoxininhumanintestinalorganoids AT weissalisona tissueresponsestoshigatoxininhumanintestinalorganoids AT hawkinsjennifer tissueresponsestoshigatoxininhumanintestinalorganoids AT polinghollym tissueresponsestoshigatoxininhumanintestinalorganoids AT helmrathmichaela tissueresponsestoshigatoxininhumanintestinalorganoids AT wellsjamesm tissueresponsestoshigatoxininhumanintestinalorganoids AT mccauleyheathera tissueresponsestoshigatoxininhumanintestinalorganoids |