Cargando…
The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny
Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime, of intermediate Reynolds numbers, was shown to affect the swimming of larval fish and impede their abi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240303/ https://www.ncbi.nlm.nih.gov/pubmed/32253288 http://dx.doi.org/10.1242/jeb.214734 |
Sumario: | Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime, of intermediate Reynolds numbers, was shown to affect the swimming of larval fish and impede their ability to capture prey. Prey capture is impeded because smaller larvae produce weaker suction flows, exerting weaker forces on the prey. Previous observations on feeding larvae also showed prey exiting the mouth after initially entering it (hereafter ‘in-and-out’), although the mechanism causing such failures had been unclear. In this study, we used numerical simulations to investigate the hydrodynamic mechanisms responsible for the failure to feed caused by this in-and-out prey movement. Detailed kinematics of the expanding mouth during prey capture by larval Sparus aurata were used to parameterize age-specific numerical models of the flows inside the mouth. These models revealed that for small larvae which expand their mouth slowly, fluid entering the mouth cavity is expelled through the mouth before it is closed, resulting in flow reversal at the orifice. This relative efflux of water through the mouth was >8% of the influx through the mouth for younger ages. However, similar effluxes were found when we simulated slow strikes by larger fish. The simulations can explain the observations of larval fish failing to feed because of the in-and-out movement of the prey. These results further highlight the importance of transporting the prey from the gape deeper into the mouth cavity in determining suction-feeding success. |
---|