Cargando…
Assessment of a Prediction Model for Antidepressant Treatment Stability Using Supervised Topic Models
IMPORTANCE: In the absence of readily assessed and clinically validated predictors of treatment response, pharmacologic management of major depressive disorder often relies on trial and error. OBJECTIVE: To assess a model using electronic health records to identify predictors of treatment response i...
Autores principales: | Hughes, Michael C., Pradier, Melanie F., Ross, Andrew Slavin, McCoy, Thomas H., Perlis, Roy H., Doshi-Velez, Finale |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240354/ https://www.ncbi.nlm.nih.gov/pubmed/32432711 http://dx.doi.org/10.1001/jamanetworkopen.2020.5308 |
Ejemplares similares
-
Predicting treatment dropout after antidepressant initiation
por: Pradier, Melanie F., et al.
Publicado: (2020) -
How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection
por: Jacobs, Maia, et al.
Publicado: (2021) -
Assessment of Time-Series Machine Learning Methods for Forecasting Hospital Discharge Volume
por: McCoy, Thomas H., et al.
Publicado: (2018) -
Laboratory Findings Associated With Severe Illness and Mortality Among Hospitalized Individuals With Coronavirus Disease 2019 in Eastern Massachusetts
por: Castro, Victor M., et al.
Publicado: (2020) -
Improving counterfactual reasoning with kernelised dynamic mixing models
por: Parbhoo, Sonali, et al.
Publicado: (2018)