Cargando…

Evaluation of Repellent Effectiveness of Polyvinyl Alcohol/Eucalyptus globules Nanofibrous Membranes against Forcipomyia taiwana

This study aims to develop nanofibrous membranes where Eucalyptus globules oil (EGO) is wrapped in polyvinyl alcohol (PVA). The EGO-based nanofibrous membranes are then evaluated for the protection against Forcipomyia taiwana (F. taiwana). In the first stage, the PVA solutions are formulated with di...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Ching-Wen, Hsieh, Ming-Chun, Lu, Chao-Tsang, Lai, Mei-Feng, Lee, Mong-Chuan, Shiu, Bing-Chiuan, Lin, Jia-Horng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240451/
https://www.ncbi.nlm.nih.gov/pubmed/32290190
http://dx.doi.org/10.3390/polym12040870
Descripción
Sumario:This study aims to develop nanofibrous membranes where Eucalyptus globules oil (EGO) is wrapped in polyvinyl alcohol (PVA). The EGO-based nanofibrous membranes are then evaluated for the protection against Forcipomyia taiwana (F. taiwana). In the first stage, the PVA solutions are formulated with different concentrations and are measured for viscosity and electrical conductivity. In the next stage, PVA solution and EGO are blended at different ratios and electrospun into PVA/EGO nanofibrous membranes (i.e., EGO-based repellent). In this study, a PVA concentration of 14 wt% has a positive influence on fiber formation. Furthermore, the finest nanofibers of 291 nm are presented when the voltage is 15 kV. The repellent efficacy can reach 80% in a 60-min release when the repellent is composed of a PVA/oil ratio of 90/10. To sum up, the nanofibrous membranes of essential oil exhibit good repellent efficacy against F. taiwana and significant slow-release effect, instead of adversely affecting the cell viability.