Cargando…

Thermochromic Fibers via Electrospinning

Cholesteryl ester liquid crystals exhibit thermochromic properties related to the existence of a twisted nematic phase. We formulate ternary mixtures of cholesteryl benzoate (CB), cholesteryl pelargonate (CP), and cholesteryl oleyl carbonate (COC) to achieve thermochromic behavior. We aim to achieve...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Jimmy, Stwodah, Ratib M., Vasey, Christopher L., Rabatin, Briget E., Atherton, Benjamin, D’Angelo, Paola A., Swana, Kathleen W., Tang, Christina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240475/
https://www.ncbi.nlm.nih.gov/pubmed/32268610
http://dx.doi.org/10.3390/polym12040842
_version_ 1783536891784593408
author Nguyen, Jimmy
Stwodah, Ratib M.
Vasey, Christopher L.
Rabatin, Briget E.
Atherton, Benjamin
D’Angelo, Paola A.
Swana, Kathleen W.
Tang, Christina
author_facet Nguyen, Jimmy
Stwodah, Ratib M.
Vasey, Christopher L.
Rabatin, Briget E.
Atherton, Benjamin
D’Angelo, Paola A.
Swana, Kathleen W.
Tang, Christina
author_sort Nguyen, Jimmy
collection PubMed
description Cholesteryl ester liquid crystals exhibit thermochromic properties related to the existence of a twisted nematic phase. We formulate ternary mixtures of cholesteryl benzoate (CB), cholesteryl pelargonate (CP), and cholesteryl oleyl carbonate (COC) to achieve thermochromic behavior. We aim to achieve thermochromic fibers by incorporating the liquid crystal formulations into electrospun fibers. Two methods of incorporating the liquid crystal (LC) are compared: (1) blend electrospinning and (2) coaxial electrospinning using the same solvent system for the liquid crystal. For blend electrospinning, intermolecular interactions seem to be important in facilitating fiber formation since addition of LC can suppress bead formation. Coaxial electrospinning produces fibers with higher nominal fiber production rates (g/hr) and with higher nominal LC content in the fiber (wt. LC/wt. polymer assuming all of the solvent evaporates) but larger fiber size distributions as quantified by the coefficient of variation in fiber diameter than blend electrospinning with a single nozzle. Importantly, our proof-of-concept experiments demonstrate that coaxially electrospinning with LC and solvent in the core preserves the thermochromic properties of the LC so that thermochromic fibers are achieved.
format Online
Article
Text
id pubmed-7240475
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72404752020-06-11 Thermochromic Fibers via Electrospinning Nguyen, Jimmy Stwodah, Ratib M. Vasey, Christopher L. Rabatin, Briget E. Atherton, Benjamin D’Angelo, Paola A. Swana, Kathleen W. Tang, Christina Polymers (Basel) Article Cholesteryl ester liquid crystals exhibit thermochromic properties related to the existence of a twisted nematic phase. We formulate ternary mixtures of cholesteryl benzoate (CB), cholesteryl pelargonate (CP), and cholesteryl oleyl carbonate (COC) to achieve thermochromic behavior. We aim to achieve thermochromic fibers by incorporating the liquid crystal formulations into electrospun fibers. Two methods of incorporating the liquid crystal (LC) are compared: (1) blend electrospinning and (2) coaxial electrospinning using the same solvent system for the liquid crystal. For blend electrospinning, intermolecular interactions seem to be important in facilitating fiber formation since addition of LC can suppress bead formation. Coaxial electrospinning produces fibers with higher nominal fiber production rates (g/hr) and with higher nominal LC content in the fiber (wt. LC/wt. polymer assuming all of the solvent evaporates) but larger fiber size distributions as quantified by the coefficient of variation in fiber diameter than blend electrospinning with a single nozzle. Importantly, our proof-of-concept experiments demonstrate that coaxially electrospinning with LC and solvent in the core preserves the thermochromic properties of the LC so that thermochromic fibers are achieved. MDPI 2020-04-06 /pmc/articles/PMC7240475/ /pubmed/32268610 http://dx.doi.org/10.3390/polym12040842 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nguyen, Jimmy
Stwodah, Ratib M.
Vasey, Christopher L.
Rabatin, Briget E.
Atherton, Benjamin
D’Angelo, Paola A.
Swana, Kathleen W.
Tang, Christina
Thermochromic Fibers via Electrospinning
title Thermochromic Fibers via Electrospinning
title_full Thermochromic Fibers via Electrospinning
title_fullStr Thermochromic Fibers via Electrospinning
title_full_unstemmed Thermochromic Fibers via Electrospinning
title_short Thermochromic Fibers via Electrospinning
title_sort thermochromic fibers via electrospinning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240475/
https://www.ncbi.nlm.nih.gov/pubmed/32268610
http://dx.doi.org/10.3390/polym12040842
work_keys_str_mv AT nguyenjimmy thermochromicfibersviaelectrospinning
AT stwodahratibm thermochromicfibersviaelectrospinning
AT vaseychristopherl thermochromicfibersviaelectrospinning
AT rabatinbrigete thermochromicfibersviaelectrospinning
AT athertonbenjamin thermochromicfibersviaelectrospinning
AT dangelopaolaa thermochromicfibersviaelectrospinning
AT swanakathleenw thermochromicfibersviaelectrospinning
AT tangchristina thermochromicfibersviaelectrospinning