Cargando…

Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives

A series of well-defined antimicrobial polymers composed of comonomers bearing thiazole ring (2-(((2-(4-methylthiazol-5-yl)ethoxy)carbonyl)oxy)ethyl methacrylate monomer (MTZ)) and non-hemotoxic poly(ethylene glycol) side chains (poly(ethylene glycol) methyl ether methacrylate (PEGMA)) were synthesi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuervo-Rodríguez, R., Muñoz-Bonilla, A., López-Fabal, F., Fernández-García, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240493/
https://www.ncbi.nlm.nih.gov/pubmed/32331281
http://dx.doi.org/10.3390/polym12040972
_version_ 1783536896060686336
author Cuervo-Rodríguez, R.
Muñoz-Bonilla, A.
López-Fabal, F.
Fernández-García, M.
author_facet Cuervo-Rodríguez, R.
Muñoz-Bonilla, A.
López-Fabal, F.
Fernández-García, M.
author_sort Cuervo-Rodríguez, R.
collection PubMed
description A series of well-defined antimicrobial polymers composed of comonomers bearing thiazole ring (2-(((2-(4-methylthiazol-5-yl)ethoxy)carbonyl)oxy)ethyl methacrylate monomer (MTZ)) and non-hemotoxic poly(ethylene glycol) side chains (poly(ethylene glycol) methyl ether methacrylate (PEGMA)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. By post-polymerization functionalization strategy, polymers were quaternized with either butyl or octyl iodides to result in cationic amphiphilic copolymers incorporating thiazolium groups, thus with variable hydrophobic/hydrophilic balance associated to the length of the alkylating agent. Likewise, the molar percentage of PEGMA was modulated in the copolymers, also affecting the amphiphilicity. The antimicrobial activities of these cationic polymers were determined against Gram-positive and Gram-negative bacteria and fungi. Minimum inhibitory concentration (MIC) was found to be dependent on both length of the alkyl hydrophobic chain and the content of PEGMA in the copolymers. More hydrophobic octylated copolymers were found to be more effective against all tested microorganisms. The incorporation of non-ionic hydrophilic units, PEGMA, reduces the hydrophobicity of the system and the activity is markedly reduced. This effect is dramatic in the case of butylated copolymers, in which the hydrophobic/hydrophilic balance is highly affected. The hemolytic properties of polymers analyzed against human red blood cells were greatly affected by the hydrophobic/hydrophilic balance of the copolymers and the content of PEGMA, which drastically reduces the hemotoxicity. The copolymers containing longer hydrophobic chain, octyl, are much more hemotoxic than their corresponding butylated copolymers.
format Online
Article
Text
id pubmed-7240493
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72404932020-06-11 Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives Cuervo-Rodríguez, R. Muñoz-Bonilla, A. López-Fabal, F. Fernández-García, M. Polymers (Basel) Article A series of well-defined antimicrobial polymers composed of comonomers bearing thiazole ring (2-(((2-(4-methylthiazol-5-yl)ethoxy)carbonyl)oxy)ethyl methacrylate monomer (MTZ)) and non-hemotoxic poly(ethylene glycol) side chains (poly(ethylene glycol) methyl ether methacrylate (PEGMA)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. By post-polymerization functionalization strategy, polymers were quaternized with either butyl or octyl iodides to result in cationic amphiphilic copolymers incorporating thiazolium groups, thus with variable hydrophobic/hydrophilic balance associated to the length of the alkylating agent. Likewise, the molar percentage of PEGMA was modulated in the copolymers, also affecting the amphiphilicity. The antimicrobial activities of these cationic polymers were determined against Gram-positive and Gram-negative bacteria and fungi. Minimum inhibitory concentration (MIC) was found to be dependent on both length of the alkyl hydrophobic chain and the content of PEGMA in the copolymers. More hydrophobic octylated copolymers were found to be more effective against all tested microorganisms. The incorporation of non-ionic hydrophilic units, PEGMA, reduces the hydrophobicity of the system and the activity is markedly reduced. This effect is dramatic in the case of butylated copolymers, in which the hydrophobic/hydrophilic balance is highly affected. The hemolytic properties of polymers analyzed against human red blood cells were greatly affected by the hydrophobic/hydrophilic balance of the copolymers and the content of PEGMA, which drastically reduces the hemotoxicity. The copolymers containing longer hydrophobic chain, octyl, are much more hemotoxic than their corresponding butylated copolymers. MDPI 2020-04-22 /pmc/articles/PMC7240493/ /pubmed/32331281 http://dx.doi.org/10.3390/polym12040972 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cuervo-Rodríguez, R.
Muñoz-Bonilla, A.
López-Fabal, F.
Fernández-García, M.
Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives
title Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives
title_full Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives
title_fullStr Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives
title_full_unstemmed Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives
title_short Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives
title_sort hemolytic and antimicrobial activities of a series of cationic amphiphilic copolymers comprised of same centered comonomers with thiazole moieties and polyethylene glycol derivatives
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240493/
https://www.ncbi.nlm.nih.gov/pubmed/32331281
http://dx.doi.org/10.3390/polym12040972
work_keys_str_mv AT cuervorodriguezr hemolyticandantimicrobialactivitiesofaseriesofcationicamphiphiliccopolymerscomprisedofsamecenteredcomonomerswiththiazolemoietiesandpolyethyleneglycolderivatives
AT munozbonillaa hemolyticandantimicrobialactivitiesofaseriesofcationicamphiphiliccopolymerscomprisedofsamecenteredcomonomerswiththiazolemoietiesandpolyethyleneglycolderivatives
AT lopezfabalf hemolyticandantimicrobialactivitiesofaseriesofcationicamphiphiliccopolymerscomprisedofsamecenteredcomonomerswiththiazolemoietiesandpolyethyleneglycolderivatives
AT fernandezgarciam hemolyticandantimicrobialactivitiesofaseriesofcationicamphiphiliccopolymerscomprisedofsamecenteredcomonomerswiththiazolemoietiesandpolyethyleneglycolderivatives