Cargando…
Lanthanoids Goes Healing: Lanthanoidic Metallopolymers and Their Scratch Closure Behavior
Metallopolymers represent an interesting combination of inorganic metal complexes and polymers resulting in a variety of outstanding properties and applications. One field of interest are stimuli-responsive materials and, in particular, self-healing polymers. These systems could be achieved by the i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240633/ https://www.ncbi.nlm.nih.gov/pubmed/32268577 http://dx.doi.org/10.3390/polym12040838 |
Sumario: | Metallopolymers represent an interesting combination of inorganic metal complexes and polymers resulting in a variety of outstanding properties and applications. One field of interest are stimuli-responsive materials and, in particular, self-healing polymers. These systems could be achieved by the incorporation of terpyridine–lanthanoid complexes of Eu (III), Tb (III), and Dy (III) in the side chains of well-defined copolymers, which were prepared applying the reversible addition fragmentation chain-transfer (RAFT)-polymerization technique. The metal complexes crosslink the polymer chains in order to form reversible supramolecular networks. These dynamics enable the self-healing behavior. The information on composition, reversibility, and stability of the complexes was obtained by isothermal titration calorimetry (ITC). Moreover, self-healing experiments were performed by using 3D-microscopy and indentation. |
---|