Cargando…
Influence of Chromophoric Electron-Donating Groups on Photoinduced Solid-to-Liquid Transitions of Azopolymers
The photoinduced solid-to-liquid transitions property of azobenzene-containing polymers (azopolymers) enables azopolymers with various promising applications. However, a general lack of knowledge regarding the influence of structure of the azobenzene derivatives on the photoinduced liquefaction hind...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240690/ https://www.ncbi.nlm.nih.gov/pubmed/32294996 http://dx.doi.org/10.3390/polym12040901 |
Sumario: | The photoinduced solid-to-liquid transitions property of azobenzene-containing polymers (azopolymers) enables azopolymers with various promising applications. However, a general lack of knowledge regarding the influence of structure of the azobenzene derivatives on the photoinduced liquefaction hinders the design of novel azopolymers. In the present study, a series of azopolymers with side chains containing azobenzene unit bearing alkyl electron-donating groups were synthesized. The photoisomerization and photoinduced liquefaction properties of newly synthesized azopolymers were investigated. Alkyl-based electron-donating group significantly facilitate the photoisomerization process of azopolymers in solution, as the electron-donating ability of substituents increased, the time required for photoisomerization of azopolymers continually deceased. Meanwhile, the electron-donating group can drastically accelerate photoinduced solid-to-liquid transitions of azopolymers, the liquefaction rate of obtained azopolymers gradually getting quicker as the electron-donating ability of substituents increased. This study clearly demonstrates that the electron-donating group that bearing in the azobenzene group of polymer side chain play an essential role on the photoinduced solid-to-liquid transitions of azopolymers, and hence, gives an insight into how to design novel azopolymers for practical applications. |
---|