Cargando…

Hidden Genetic Variability, Can the Olive Moth Prays oleae (Lepidoptera: Yponomeutidae or Praydidae?) be a Species’ Complex?

Prays oleae is the second most important pest in Mediterranean olive groves, causing substantial damage on olive production. We used mitochondrial [cytochrome c oxidase subunit I (COI), and NADH dehydrogenase subunit 5 (nad5)] and nuclear [ribosomal protein S5 (RpS5)] amplicons to assess the populat...

Descripción completa

Detalles Bibliográficos
Autores principales: Pazian, Marlon, Nobre, Tânia, Blibech, Imen, Rei, Fernando T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240722/
https://www.ncbi.nlm.nih.gov/pubmed/32225064
http://dx.doi.org/10.3390/insects11040204
Descripción
Sumario:Prays oleae is the second most important pest in Mediterranean olive groves, causing substantial damage on olive production. We used mitochondrial [cytochrome c oxidase subunit I (COI), and NADH dehydrogenase subunit 5 (nad5)] and nuclear [ribosomal protein S5 (RpS5)] amplicons to assess the population variability in five main olive producing regions from Tunisia, to support or dismiss the existence of two non-monophyletic groups within the species, as found within Portugal. Our phylogenetic analysis with cytochrome c oxidase subunit I (COI) indeed displayed two distinct and well-supported clades of P. oleae, which were corroborated by the haplotype network reconstructed with both mitochondrial and nuclear amplicons. We were also able to dismiss the hypothesis that one of the clades would not develop on olive fruits. No correlation was observed between clades differentiation and geographic distribution. The existence of cryptic species can impact on the management of agroecosystems and on the perception of how these moths responds to environmental changes.