Cargando…
Lensless Fourier transform electron holography applied to vortex beam analysis
Lensless Fourier transform holography has been developed. By treating Bragg diffraction waves as object waves and a transmitted spherical wave as a reference wave, these two waves are interfered and recorded as holograms away from the reciprocal plane. In this method, reconstruction of holograms req...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240779/ https://www.ncbi.nlm.nih.gov/pubmed/32211884 http://dx.doi.org/10.1093/jmicro/dfaa008 |
Sumario: | Lensless Fourier transform holography has been developed. By treating Bragg diffraction waves as object waves and a transmitted spherical wave as a reference wave, these two waves are interfered and recorded as holograms away from the reciprocal plane. In this method, reconstruction of holograms requires only one Fourier transform. Application of this method to analyze vortex beams worked well and their amplitude and phase distributions were obtained on the reciprocal plane. By combining the conventional holography with the developed lensless Fourier transform holography, we can reconstruct and analyze electron waves from the real to reciprocal space continuously. |
---|