Cargando…

Structure–Property Relationship of Polyetherimide Fibers Filled with Carbon Nanoparticles

[Image: see text] Nanocomposite fibers based on heat-resistant amorphous polyetherimide (PEI) were prepared by twin screw melt micro-extrusion. Vapor-grown carbon nanofibers (VGCFs) and single-wall carbon nanotubes (SWCNTs) were used as fillers which helped to achieve enhanced mechanical properties....

Descripción completa

Detalles Bibliográficos
Autores principales: Ivan’kova, Elena M., Vaganov, Gleb V., Popova, Elena N., Elokhovskiy, Vladimir Yu, Kasatkin, Igor A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240814/
https://www.ncbi.nlm.nih.gov/pubmed/32455186
http://dx.doi.org/10.1021/acsomega.9b04102
Descripción
Sumario:[Image: see text] Nanocomposite fibers based on heat-resistant amorphous polyetherimide (PEI) were prepared by twin screw melt micro-extrusion. Vapor-grown carbon nanofibers (VGCFs) and single-wall carbon nanotubes (SWCNTs) were used as fillers which helped to achieve enhanced mechanical properties. The structure and mechanical properties of such nanocomposite fibers were studied. Electron microscopy and melt rheology data revealed a uniform distribution of the nanofillers throughout the volume of the fibers. Wide-angle X-ray scattering showed that the orientational drawing of the nanocomposite fibers led to an improved orientation of the filler particles along the fiber axis. VGCFs or SWCNTs increased the tensile strength and modulus (by ∼275 MPa and ∼5 GPa, respectively) in oriented nanocomposite fibers and decreased deformation at break. SWCNTs were found to be more effective reinforcers than VGCFs.