Cargando…

HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)

[Image: see text] Type-I clathrate compounds Yb(x)Ba(8–x)Ga(16)Ge(30) have been synthesized by the high-pressure and high-temperature (HPHT) method rapidly. The effects of the synergy of atom filling and pressure regulation on the microstructure and thermal and electrical properties have been invest...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bing, Li, Yingde, Cao, Lianzhen, Chen, Yongmi, Fan, Xinmin, Yang, Yang, Liu, Xia, Wang, Chunyan, Huang, Xiaodong, Wang, Xinle, Sun, Yongzhi, Zhao, Jiaqiang, Ma, Hongan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241043/
https://www.ncbi.nlm.nih.gov/pubmed/32455244
http://dx.doi.org/10.1021/acsomega.0c01334
_version_ 1783537013404729344
author Sun, Bing
Li, Yingde
Cao, Lianzhen
Chen, Yongmi
Fan, Xinmin
Yang, Yang
Liu, Xia
Wang, Chunyan
Huang, Xiaodong
Wang, Xinle
Sun, Yongzhi
Zhao, Jiaqiang
Ma, Hongan
author_facet Sun, Bing
Li, Yingde
Cao, Lianzhen
Chen, Yongmi
Fan, Xinmin
Yang, Yang
Liu, Xia
Wang, Chunyan
Huang, Xiaodong
Wang, Xinle
Sun, Yongzhi
Zhao, Jiaqiang
Ma, Hongan
author_sort Sun, Bing
collection PubMed
description [Image: see text] Type-I clathrate compounds Yb(x)Ba(8–x)Ga(16)Ge(30) have been synthesized by the high-pressure and high-temperature (HPHT) method rapidly. The effects of the synergy of atom filling and pressure regulation on the microstructure and thermal and electrical properties have been investigated. With the content of Yb atom increasing, the carrier concentration is improved, the electrical resistivity and the absolute Seebeck coefficient are decreased, while the thermal conductivity is reduced significantly. A series of extremely low lattice thermal conductivities are achieved, attributed to the enhancement of multiscale phonon scattering for the “rattling” of the filled guest atoms, the heterogeneous distribution of nano- and microstructures, grain boundaries, abundant lattice distortions, lattice deformations, and dislocations. As a result, a maximum ZT of about 1.07 at 873 K has achieved for the Yb(0.5)Ba(7.5)Ga(16)Ge(30) sample.
format Online
Article
Text
id pubmed-7241043
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-72410432020-05-22 HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30) Sun, Bing Li, Yingde Cao, Lianzhen Chen, Yongmi Fan, Xinmin Yang, Yang Liu, Xia Wang, Chunyan Huang, Xiaodong Wang, Xinle Sun, Yongzhi Zhao, Jiaqiang Ma, Hongan ACS Omega [Image: see text] Type-I clathrate compounds Yb(x)Ba(8–x)Ga(16)Ge(30) have been synthesized by the high-pressure and high-temperature (HPHT) method rapidly. The effects of the synergy of atom filling and pressure regulation on the microstructure and thermal and electrical properties have been investigated. With the content of Yb atom increasing, the carrier concentration is improved, the electrical resistivity and the absolute Seebeck coefficient are decreased, while the thermal conductivity is reduced significantly. A series of extremely low lattice thermal conductivities are achieved, attributed to the enhancement of multiscale phonon scattering for the “rattling” of the filled guest atoms, the heterogeneous distribution of nano- and microstructures, grain boundaries, abundant lattice distortions, lattice deformations, and dislocations. As a result, a maximum ZT of about 1.07 at 873 K has achieved for the Yb(0.5)Ba(7.5)Ga(16)Ge(30) sample. American Chemical Society 2020-05-04 /pmc/articles/PMC7241043/ /pubmed/32455244 http://dx.doi.org/10.1021/acsomega.0c01334 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Sun, Bing
Li, Yingde
Cao, Lianzhen
Chen, Yongmi
Fan, Xinmin
Yang, Yang
Liu, Xia
Wang, Chunyan
Huang, Xiaodong
Wang, Xinle
Sun, Yongzhi
Zhao, Jiaqiang
Ma, Hongan
HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)
title HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)
title_full HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)
title_fullStr HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)
title_full_unstemmed HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)
title_short HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb(x)Ba(8–x)Ga(16)Ge(30)
title_sort hpht synthesis: effects of the synergy of pressure regulation and atom filling on the microstructure and thermoelectric properties of yb(x)ba(8–x)ga(16)ge(30)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241043/
https://www.ncbi.nlm.nih.gov/pubmed/32455244
http://dx.doi.org/10.1021/acsomega.0c01334
work_keys_str_mv AT sunbing hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT liyingde hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT caolianzhen hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT chenyongmi hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT fanxinmin hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT yangyang hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT liuxia hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT wangchunyan hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT huangxiaodong hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT wangxinle hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT sunyongzhi hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT zhaojiaqiang hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30
AT mahongan hphtsynthesiseffectsofthesynergyofpressureregulationandatomfillingonthemicrostructureandthermoelectricpropertiesofybxba8xga16ge30