Cargando…
Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice
BACKGROUND: High-throughput sequencing of the pathological tissue of 59 patients with thyroid cancer was compared with the normal population. It was found that the mutation frequency of the Nebulin gene (NEB) at amino acid 1133 locus of thyroid cancer patients was much higher than that of the normal...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241215/ https://www.ncbi.nlm.nih.gov/pubmed/32390000 http://dx.doi.org/10.12659/MSM.922953 |
_version_ | 1783537030928531456 |
---|---|
author | Wang, Haoyong Nie, Xiaoyue Li, Xin Fang, Yi Wang, Dandan Wang, William Hu, Yong Liu, Zijing Cao, Cheng |
author_facet | Wang, Haoyong Nie, Xiaoyue Li, Xin Fang, Yi Wang, Dandan Wang, William Hu, Yong Liu, Zijing Cao, Cheng |
author_sort | Wang, Haoyong |
collection | PubMed |
description | BACKGROUND: High-throughput sequencing of the pathological tissue of 59 patients with thyroid cancer was compared with the normal population. It was found that the mutation frequency of the Nebulin gene (NEB) at amino acid 1133 locus of thyroid cancer patients was much higher than that of the normal population, suggesting that NEB mutation may be related to thyroid cancer. Therefore, we constructed the NEB mutant mice for further investigation. MATERIAL/METHODS: The RNA extracted from the thyroid of wild-type and NEB mutant mice was analyzed by high-throughput sequencing, and the differential expression was analyzed by edgeR software. Several differentially expressed genes were selected for quantitative real-time PCR (qRT-PCR) verification, and these genes were analyzed with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS: A total of 624 genes were significantly enriched. Analysis of GO function and pathway significant enrichment showed that differentially expressed genes were enriched in thyroid cancer, myocardial contraction, and autoimmune thyroid disease. The qRT-PCR results were consistent with the high-throughput sequencing results. CONCLUSIONS: Our data indicate that the expression of some cancer-driving genes and cancer suppressor genes are significantly changed in NEB mutant mice compared to wild-type mice, which suggests that NEB function plays an important role in regulating the expression of cancer-related genes in the thyroid gland. |
format | Online Article Text |
id | pubmed-7241215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72412152020-06-01 Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice Wang, Haoyong Nie, Xiaoyue Li, Xin Fang, Yi Wang, Dandan Wang, William Hu, Yong Liu, Zijing Cao, Cheng Med Sci Monit Animal Study BACKGROUND: High-throughput sequencing of the pathological tissue of 59 patients with thyroid cancer was compared with the normal population. It was found that the mutation frequency of the Nebulin gene (NEB) at amino acid 1133 locus of thyroid cancer patients was much higher than that of the normal population, suggesting that NEB mutation may be related to thyroid cancer. Therefore, we constructed the NEB mutant mice for further investigation. MATERIAL/METHODS: The RNA extracted from the thyroid of wild-type and NEB mutant mice was analyzed by high-throughput sequencing, and the differential expression was analyzed by edgeR software. Several differentially expressed genes were selected for quantitative real-time PCR (qRT-PCR) verification, and these genes were analyzed with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS: A total of 624 genes were significantly enriched. Analysis of GO function and pathway significant enrichment showed that differentially expressed genes were enriched in thyroid cancer, myocardial contraction, and autoimmune thyroid disease. The qRT-PCR results were consistent with the high-throughput sequencing results. CONCLUSIONS: Our data indicate that the expression of some cancer-driving genes and cancer suppressor genes are significantly changed in NEB mutant mice compared to wild-type mice, which suggests that NEB function plays an important role in regulating the expression of cancer-related genes in the thyroid gland. International Scientific Literature, Inc. 2020-05-11 /pmc/articles/PMC7241215/ /pubmed/32390000 http://dx.doi.org/10.12659/MSM.922953 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Animal Study Wang, Haoyong Nie, Xiaoyue Li, Xin Fang, Yi Wang, Dandan Wang, William Hu, Yong Liu, Zijing Cao, Cheng Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice |
title | Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice |
title_full | Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice |
title_fullStr | Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice |
title_full_unstemmed | Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice |
title_short | Bioinformatics Analysis and High-Throughput Sequencing to Identify Differentially Expressed Genes in Nebulin Gene (NEB) Mutations Mice |
title_sort | bioinformatics analysis and high-throughput sequencing to identify differentially expressed genes in nebulin gene (neb) mutations mice |
topic | Animal Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241215/ https://www.ncbi.nlm.nih.gov/pubmed/32390000 http://dx.doi.org/10.12659/MSM.922953 |
work_keys_str_mv | AT wanghaoyong bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT niexiaoyue bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT lixin bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT fangyi bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT wangdandan bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT wangwilliam bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT huyong bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT liuzijing bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice AT caocheng bioinformaticsanalysisandhighthroughputsequencingtoidentifydifferentiallyexpressedgenesinnebulingenenebmutationsmice |