Cargando…
Biological Filtering and Substrate Promiscuity Prediction for Annotating Untargeted Metabolomics
Mass spectrometry coupled with chromatography separation techniques provides a powerful platform for untargeted metabolomics. Determining the chemical identities of detected compounds however remains a major challenge. Here, we present a novel computational workflow, termed extended metabolic model...
Autores principales: | Hassanpour, Neda, Alden, Nicholas, Menon, Rani, Jayaraman, Arul, Lee, Kyongbum, Hassoun, Soha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241244/ https://www.ncbi.nlm.nih.gov/pubmed/32326153 http://dx.doi.org/10.3390/metabo10040160 |
Ejemplares similares
-
Pathway-Activity Likelihood Analysis and Metabolite Annotation for Untargeted Metabolomics Using Probabilistic Modeling
por: Hosseini, Ramtin, et al.
Publicado: (2020) -
Environmental Chemical Diethylhexyl Phthalate Alters Intestinal Microbiota Community Structure and Metabolite Profile in Mice
por: Lei, Ming, et al.
Publicado: (2019) -
Discovery of substrate cycles in large scale metabolic networks using hierarchical modularity
por: Sridharan, Gautham Vivek, et al.
Publicado: (2015) -
MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics
por: Jeffryes, James G, et al.
Publicado: (2015) -
Filtering procedures for untargeted LC-MS metabolomics data
por: Schiffman, Courtney, et al.
Publicado: (2019)