Cargando…
NLRC5 promotes cell migration and invasion by activating the PI3K/AKT signaling pathway in endometrial cancer
OBJECTIVE: NOD-like receptor family caspase recruitment domain family domain-containing 5 (NLRC5) is involved in the development of cancer. Our objective was to explore the role of NLRC5 in the progression of endometrial cancer (EC). METHODS: The roles of NLRC5 in migration and invasion of AN3CA EC...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241267/ https://www.ncbi.nlm.nih.gov/pubmed/32431202 http://dx.doi.org/10.1177/0300060520925352 |
Sumario: | OBJECTIVE: NOD-like receptor family caspase recruitment domain family domain-containing 5 (NLRC5) is involved in the development of cancer. Our objective was to explore the role of NLRC5 in the progression of endometrial cancer (EC). METHODS: The roles of NLRC5 in migration and invasion of AN3CA EC cells were examined by cell wound-healing assay, Transwell migration, and invasion analysis. Overexpression of NLRC5 was achieved with NLRC5 plasmid, and knockdown of NLRC5 was achieved using small interfering (si)RNA-NLRC5 in AN3CA cells. The expression of NLRC5 was detected by immunohistochemical, western blot, and quantitative real-time PCR. LY294002 was used to inhibit the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. RESULTS: NLRC5 was downregulated in EC tissue compared with normal endometrium. Overexpression of NLRC5 led to upregulation of cell migration and invasion in AN3CA cells and expression of matrix metallopeptidase (MMP)-9. Inhibition of NLRC5 restricted migration and invasion of AN3CA cells and expression of MMP9. Overexpression of NLRC5 promoted the activation of PI3K/AKT signaling pathway. Inhibiting PI3K/AKT signaling pathway by using LY294002 blocked the positive role of NLRC5 in migration and invasion of AN3CA cells and expression of MMP9. CONCLUSIONS: These results demonstrate that NLRC5 promotes EC progression by activating the PI3K/AKT signaling pathway. |
---|