Cargando…

Developing an ultra-efficient microsatellite discoverer to find structural differences between SARS-CoV-1 and Covid-19

MOTIVATION: Recently, the outbreak of Coronavirus-Covid-19 has forced the World Health Organization to declare a pandemic status. A genome sequence is the core of this virus which interferes with the normal activities of its counterparts within humans. Analysis of its genome may provide clues toward...

Descripción completa

Detalles Bibliográficos
Autores principales: Naghibzadeh, Mahmoud, Savari, Hossein, Savadi, Abdorreza, Saadati, Nayyereh, Mehrazin, Elahe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241407/
https://www.ncbi.nlm.nih.gov/pubmed/32501423
http://dx.doi.org/10.1016/j.imu.2020.100356
Descripción
Sumario:MOTIVATION: Recently, the outbreak of Coronavirus-Covid-19 has forced the World Health Organization to declare a pandemic status. A genome sequence is the core of this virus which interferes with the normal activities of its counterparts within humans. Analysis of its genome may provide clues toward the proper treatment of patients and the design of new drugs and vaccines. Microsatellites are composed of short genome subsequences which are successively repeated many times in the same direction. They are highly variable in terms of their building blocks, number of repeats, and their locations in the genome sequences. This mutability property has been the source of many diseases. Usually the host genome is analyzed to diagnose possible diseases in the victim. In this research, the focus is concentrated on the attacker's genome for discovery of its malicious properties. RESULTS: The focus of this research is the microsatellites of both SARS and Covid-19. An accurate and highly efficient computer method for identifying all microsatellites in the genome sequences is discovered and implemented, and it is used to find all microsatellites in the Coronavirus-Covid-19 and SARS2003. The Microsatellite discovery is based on an efficient indexing technique called K-Mer Hash Indexing. The method is called Fast Microsatellite Discovery (FMSD) and it is used for both SARS and Covid-19. A table composed of all microsatellites is reported. There are many differences between SARS and Covid-19, but there is an outstanding difference which requires further investigation. AVAILABILITY: FMSD is freely available at https://gitlab.com/FUM_HPCLab/fmsd_project, implemented in C on Linux-Ubuntu system. Software related contact: hossein_savari@mail.um.ac.ir.