Cargando…
Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps
We describe in this paper an analysis of the spatial evolution of coronavirus pandemic around the world by using a particular type of unsupervised neural network, which is called self-organizing maps. Based on the clustering abilities of self-organizing maps we are able to spatially group together c...
Autores principales: | Melin, Patricia, Monica, Julio Cesar, Sanchez, Daniela, Castillo, Oscar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241408/ https://www.ncbi.nlm.nih.gov/pubmed/32501376 http://dx.doi.org/10.1016/j.chaos.2020.109917 |
Ejemplares similares
-
A new prediction approach of the COVID-19 virus pandemic behavior with a hybrid ensemble modular nonlinear autoregressive neural network
por: Melin, Patricia, et al.
Publicado: (2020) -
Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico
por: Melin, Patricia, et al.
Publicado: (2020) -
Optimization using the firefly algorithm of ensemble neural networks with type-2 fuzzy integration for COVID-19 time series prediction
por: Melin, Patricia, et al.
Publicado: (2021) -
Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic
por: Castillo, Oscar, et al.
Publicado: (2020) -
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
por: Sánchez, Daniela, et al.
Publicado: (2017)