Cargando…
An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on mul...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241836/ https://www.ncbi.nlm.nih.gov/pubmed/32365062 http://dx.doi.org/10.1371/journal.pcbi.1007840 |
_version_ | 1783537140992311296 |
---|---|
author | Hay, James A. Minter, Amanda Ainslie, Kylie E. C. Lessler, Justin Yang, Bingyi Cummings, Derek A. T. Kucharski, Adam J. Riley, Steven |
author_facet | Hay, James A. Minter, Amanda Ainslie, Kylie E. C. Lessler, Justin Yang, Bingyi Cummings, Derek A. T. Kucharski, Adam J. Riley, Steven |
author_sort | Hay, James A. |
collection | PubMed |
description | We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on multiple unobserved prior infections that produce cross-reactive antibody responses. We provide a general modelling framework to jointly infer infection histories and describe immune responses generated by these infections using antibody titres against current and historical strains. We do this by linking latent infection dynamics with a mechanistic model of antibody kinetics that generates expected antibody titres over time. Our aim is to provide a flexible package to identify infection histories that can be applied to a range of pathogens. We present two case studies to illustrate how our model can infer key immunological parameters, such as antibody titre boosting, waning and cross-reaction, as well as latent epidemiological processes such as attack rates and age-stratified infection risk. |
format | Online Article Text |
id | pubmed-7241836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72418362020-06-03 An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver Hay, James A. Minter, Amanda Ainslie, Kylie E. C. Lessler, Justin Yang, Bingyi Cummings, Derek A. T. Kucharski, Adam J. Riley, Steven PLoS Comput Biol Research Article We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on multiple unobserved prior infections that produce cross-reactive antibody responses. We provide a general modelling framework to jointly infer infection histories and describe immune responses generated by these infections using antibody titres against current and historical strains. We do this by linking latent infection dynamics with a mechanistic model of antibody kinetics that generates expected antibody titres over time. Our aim is to provide a flexible package to identify infection histories that can be applied to a range of pathogens. We present two case studies to illustrate how our model can infer key immunological parameters, such as antibody titre boosting, waning and cross-reaction, as well as latent epidemiological processes such as attack rates and age-stratified infection risk. Public Library of Science 2020-05-04 /pmc/articles/PMC7241836/ /pubmed/32365062 http://dx.doi.org/10.1371/journal.pcbi.1007840 Text en © 2020 Hay et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hay, James A. Minter, Amanda Ainslie, Kylie E. C. Lessler, Justin Yang, Bingyi Cummings, Derek A. T. Kucharski, Adam J. Riley, Steven An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
title | An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
title_full | An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
title_fullStr | An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
title_full_unstemmed | An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
title_short | An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
title_sort | open source tool to infer epidemiological and immunological dynamics from serological data: serosolver |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241836/ https://www.ncbi.nlm.nih.gov/pubmed/32365062 http://dx.doi.org/10.1371/journal.pcbi.1007840 |
work_keys_str_mv | AT hayjamesa anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT minteramanda anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT ainsliekylieec anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT lesslerjustin anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT yangbingyi anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT cummingsderekat anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT kucharskiadamj anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT rileysteven anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT hayjamesa opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT minteramanda opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT ainsliekylieec opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT lesslerjustin opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT yangbingyi opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT cummingsderekat opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT kucharskiadamj opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver AT rileysteven opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver |