Cargando…

An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver

We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on mul...

Descripción completa

Detalles Bibliográficos
Autores principales: Hay, James A., Minter, Amanda, Ainslie, Kylie E. C., Lessler, Justin, Yang, Bingyi, Cummings, Derek A. T., Kucharski, Adam J., Riley, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241836/
https://www.ncbi.nlm.nih.gov/pubmed/32365062
http://dx.doi.org/10.1371/journal.pcbi.1007840
_version_ 1783537140992311296
author Hay, James A.
Minter, Amanda
Ainslie, Kylie E. C.
Lessler, Justin
Yang, Bingyi
Cummings, Derek A. T.
Kucharski, Adam J.
Riley, Steven
author_facet Hay, James A.
Minter, Amanda
Ainslie, Kylie E. C.
Lessler, Justin
Yang, Bingyi
Cummings, Derek A. T.
Kucharski, Adam J.
Riley, Steven
author_sort Hay, James A.
collection PubMed
description We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on multiple unobserved prior infections that produce cross-reactive antibody responses. We provide a general modelling framework to jointly infer infection histories and describe immune responses generated by these infections using antibody titres against current and historical strains. We do this by linking latent infection dynamics with a mechanistic model of antibody kinetics that generates expected antibody titres over time. Our aim is to provide a flexible package to identify infection histories that can be applied to a range of pathogens. We present two case studies to illustrate how our model can infer key immunological parameters, such as antibody titre boosting, waning and cross-reaction, as well as latent epidemiological processes such as attack rates and age-stratified infection risk.
format Online
Article
Text
id pubmed-7241836
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-72418362020-06-03 An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver Hay, James A. Minter, Amanda Ainslie, Kylie E. C. Lessler, Justin Yang, Bingyi Cummings, Derek A. T. Kucharski, Adam J. Riley, Steven PLoS Comput Biol Research Article We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on multiple unobserved prior infections that produce cross-reactive antibody responses. We provide a general modelling framework to jointly infer infection histories and describe immune responses generated by these infections using antibody titres against current and historical strains. We do this by linking latent infection dynamics with a mechanistic model of antibody kinetics that generates expected antibody titres over time. Our aim is to provide a flexible package to identify infection histories that can be applied to a range of pathogens. We present two case studies to illustrate how our model can infer key immunological parameters, such as antibody titre boosting, waning and cross-reaction, as well as latent epidemiological processes such as attack rates and age-stratified infection risk. Public Library of Science 2020-05-04 /pmc/articles/PMC7241836/ /pubmed/32365062 http://dx.doi.org/10.1371/journal.pcbi.1007840 Text en © 2020 Hay et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hay, James A.
Minter, Amanda
Ainslie, Kylie E. C.
Lessler, Justin
Yang, Bingyi
Cummings, Derek A. T.
Kucharski, Adam J.
Riley, Steven
An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
title An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
title_full An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
title_fullStr An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
title_full_unstemmed An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
title_short An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
title_sort open source tool to infer epidemiological and immunological dynamics from serological data: serosolver
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241836/
https://www.ncbi.nlm.nih.gov/pubmed/32365062
http://dx.doi.org/10.1371/journal.pcbi.1007840
work_keys_str_mv AT hayjamesa anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT minteramanda anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT ainsliekylieec anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT lesslerjustin anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT yangbingyi anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT cummingsderekat anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT kucharskiadamj anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT rileysteven anopensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT hayjamesa opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT minteramanda opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT ainsliekylieec opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT lesslerjustin opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT yangbingyi opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT cummingsderekat opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT kucharskiadamj opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver
AT rileysteven opensourcetooltoinferepidemiologicalandimmunologicaldynamicsfromserologicaldataserosolver