Cargando…
A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type
The microbiome is a new frontier for building predictors of human phenotypes. However, machine learning in the microbiome is fraught with issues of reproducibility, driven in large part by the wide range of analytic models and metagenomic data types available. We aimed to build robust metagenomic pr...
Autores principales: | Le Goallec, Alan, Tierney, Braden T., Luber, Jacob M., Cofer, Evan M., Kostic, Aleksandar D., Patel, Chirag J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241849/ https://www.ncbi.nlm.nih.gov/pubmed/32392251 http://dx.doi.org/10.1371/journal.pcbi.1007895 |
Ejemplares similares
-
Aether: leveraging linear programming for optimal cloud computing in genomics
por: Luber, Jacob M, et al.
Publicado: (2018) -
Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators
por: Tierney, Braden T., et al.
Publicado: (2021) -
Systematically assessing microbiome–disease associations identifies drivers of inconsistency in metagenomic research
por: Tierney, Braden T., et al.
Publicado: (2022) -
Quantifying Shared and Unique Gene Content across 17 Microbial Ecosystems
por: Zimmerman, Samuel, et al.
Publicado: (2023) -
Using Cartesian Doubt To Build a Sequencing-Based View of Microbiology
por: Tierney, Braden T., et al.
Publicado: (2021)