Cargando…
The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases
Orderly mitochondrial life cycle, plays a key role in the pathology of neurodegenerative diseases. Mitochondria are ubiquitous in neurons as they respond to an ever-changing demand for energy supply. Mitochondria constantly change in shape and location, feature of their dynamic nature, which facilit...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIMS Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242057/ https://www.ncbi.nlm.nih.gov/pubmed/32455165 http://dx.doi.org/10.3934/Neuroscience.2020004 |
Sumario: | Orderly mitochondrial life cycle, plays a key role in the pathology of neurodegenerative diseases. Mitochondria are ubiquitous in neurons as they respond to an ever-changing demand for energy supply. Mitochondria constantly change in shape and location, feature of their dynamic nature, which facilitates a quality control mechanism. Biological studies in mitochondria dynamics are unveiling the mechanisms of fission and fusion, which essentially arrange morphology and motility of these organelles. Control of mitochondrial network homeostasis is a critical factor for the proper function of neurons. Disease-related genes have been reported to be implicated in mitochondrial dysfunction. Increasing evidence implicate mitochondrial perturbation in neuronal diseases, such as AD, PD, HD, and ALS. The intricacy involved in neurodegenerative diseases and the dynamic nature of mitochondria point to the idea that, despite progress toward detecting the biology underlying mitochondrial disorders, its link to these diseases is difficult to be identified in the laboratory. Considering the need to model signaling pathways, both in spatial and temporal level, there is a challenge to use a multiscale modeling framework, which is essential for understanding the dynamics of a complex biological system. The use of computational models in order to represent both a qualitative and a quantitative structure of mitochondrial homeostasis, allows to perform simulation experiments so as to monitor the conformational changes, as well as the intersection of form and function. |
---|