Cargando…
Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato
Ralstonia solanacearum is a bacterial vascular pathogen causing devastating bacterial wilt. In the field, resistance against this pathogen is quantitative and is available for breeders only in tomato and eggplant. To understand the basis of resistance to R. solanacearum in tomato, we investigated th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242079/ https://www.ncbi.nlm.nih.gov/pubmed/32211785 http://dx.doi.org/10.1093/jxb/erz562 |
_version_ | 1783537177516310528 |
---|---|
author | Planas-Marquès, Marc Kressin, Jonathan P Kashyap, Anurag Panthee, Dilip R Louws, Frank J Coll, Nuria S Valls, Marc |
author_facet | Planas-Marquès, Marc Kressin, Jonathan P Kashyap, Anurag Panthee, Dilip R Louws, Frank J Coll, Nuria S Valls, Marc |
author_sort | Planas-Marquès, Marc |
collection | PubMed |
description | Ralstonia solanacearum is a bacterial vascular pathogen causing devastating bacterial wilt. In the field, resistance against this pathogen is quantitative and is available for breeders only in tomato and eggplant. To understand the basis of resistance to R. solanacearum in tomato, we investigated the spatio-temporal dynamics of bacterial colonization using non-invasive live monitoring techniques coupled to grafting of susceptible and resistant varieties. We found four ‘bottlenecks’ that limit the bacterium in resistant tomato: root colonization, vertical movement from roots to shoots, circular vascular bundle invasion, and radial apoplastic spread in the cortex. Radial invasion of cortical extracellular spaces occurred mostly at late disease stages but was observed throughout plant infection. This study shows that resistance is expressed in both root and shoot tissues, and highlights the importance of structural constraints to bacterial spread as a resistance mechanism. It also shows that R. solanacearum is not only a vascular pathogen but spreads out of the xylem, occupying the plant apoplast niche. Our work will help elucidate the complex genetic determinants of resistance, setting the foundations to decipher the molecular mechanisms that limit pathogen colonization, which may provide new precision tools to fight bacterial wilt in the field. |
format | Online Article Text |
id | pubmed-7242079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72420792020-05-27 Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato Planas-Marquès, Marc Kressin, Jonathan P Kashyap, Anurag Panthee, Dilip R Louws, Frank J Coll, Nuria S Valls, Marc J Exp Bot Research Papers Ralstonia solanacearum is a bacterial vascular pathogen causing devastating bacterial wilt. In the field, resistance against this pathogen is quantitative and is available for breeders only in tomato and eggplant. To understand the basis of resistance to R. solanacearum in tomato, we investigated the spatio-temporal dynamics of bacterial colonization using non-invasive live monitoring techniques coupled to grafting of susceptible and resistant varieties. We found four ‘bottlenecks’ that limit the bacterium in resistant tomato: root colonization, vertical movement from roots to shoots, circular vascular bundle invasion, and radial apoplastic spread in the cortex. Radial invasion of cortical extracellular spaces occurred mostly at late disease stages but was observed throughout plant infection. This study shows that resistance is expressed in both root and shoot tissues, and highlights the importance of structural constraints to bacterial spread as a resistance mechanism. It also shows that R. solanacearum is not only a vascular pathogen but spreads out of the xylem, occupying the plant apoplast niche. Our work will help elucidate the complex genetic determinants of resistance, setting the foundations to decipher the molecular mechanisms that limit pathogen colonization, which may provide new precision tools to fight bacterial wilt in the field. Oxford University Press 2020-03-25 2019-12-24 /pmc/articles/PMC7242079/ /pubmed/32211785 http://dx.doi.org/10.1093/jxb/erz562 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Planas-Marquès, Marc Kressin, Jonathan P Kashyap, Anurag Panthee, Dilip R Louws, Frank J Coll, Nuria S Valls, Marc Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato |
title | Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato |
title_full | Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato |
title_fullStr | Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato |
title_full_unstemmed | Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato |
title_short | Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato |
title_sort | four bottlenecks restrict colonization and invasion by the pathogen ralstonia solanacearum in resistant tomato |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242079/ https://www.ncbi.nlm.nih.gov/pubmed/32211785 http://dx.doi.org/10.1093/jxb/erz562 |
work_keys_str_mv | AT planasmarquesmarc fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato AT kressinjonathanp fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato AT kashyapanurag fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato AT pantheedilipr fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato AT louwsfrankj fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato AT collnurias fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato AT vallsmarc fourbottlenecksrestrictcolonizationandinvasionbythepathogenralstoniasolanacearuminresistanttomato |