Cargando…

Fast response of complementary electrochromic device based on WO(3)/NiO electrodes

Nanoporous structures have proven as an effective way for enhanced electrochromic performance by providing a large surface area can get fast ion/electron transfer path, leading to larger optical modulation and fast response time. Herein, for the first time, application of vacuum cathodic arc plasma...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Po-Wen, Chang, Chen-Te, Ko, Tien-Fu, Hsu, Sheng-Chuan, Li, Ke-Ding, Wu, Jin-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242463/
https://www.ncbi.nlm.nih.gov/pubmed/32439890
http://dx.doi.org/10.1038/s41598-020-65191-x
Descripción
Sumario:Nanoporous structures have proven as an effective way for enhanced electrochromic performance by providing a large surface area can get fast ion/electron transfer path, leading to larger optical modulation and fast response time. Herein, for the first time, application of vacuum cathodic arc plasma (CAP) deposition technology to the synthesis of WO(3)/NiO electrode films on ITO glass for use in fabricating complementary electrochromic devices (ECDs) with a ITO/WO(3)/LiClO(4)-Perchlorate solution/NiO/ITO structure. Our objective was to optimize electrochromic performance through the creation of electrodes with a nanoporous structure. We also examined the influence of WO(3) film thickness on the electrochemical and optical characteristics in terms of surface charge capacity and diffusion coefficients. The resulting 200-nm-thick WO(3) films achieved ion diffusion coefficients of (7.35 × 10(−10) (oxidation) and 4.92 × 10(−10) cm(2)/s (reduction)). The complementary charge capacity ratio of WO(3) (200 nm thickness)/NiO (60 nm thickness) has impressive reversibility of 98%. A demonstration ECD device (3 × 4 cm(2)) achieved optical modulation (ΔT) of 46% and switching times of 3.1 sec (coloration) and 4.6 sec (bleaching) at a wavelength of 633 nm. In terms of durability, the proposed ECD achieved ΔT of 43% after 2500 cycles; i.e., 93% of the initial device.