Cargando…

Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Quan, Wu, Jiqin, Wang, Haofeng, Gao, Yan, Liu, Qiaojie, Mu, An, Ji, Wenxin, Yan, Liming, Zhu, Yan, Zhu, Chen, Fang, Xiang, Yang, Xiaobao, Huang, Yucen, Gao, Hailong, Liu, Fengjiang, Ge, Ji, Sun, Qianqian, Yang, Xiuna, Xu, Wenqing, Liu, Zhijie, Yang, Haitao, Lou, Zhiyong, Jiang, Biao, Guddat, Luke W., Gong, Peng, Rao, Zihe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242921/
https://www.ncbi.nlm.nih.gov/pubmed/32526208
http://dx.doi.org/10.1016/j.cell.2020.05.034
Descripción
Sumario:Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.