Cargando…
Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression
In this report, we analyze historical and forecast infections for COVID-19 death based on Reduced-Space Gaussian Process Regression associated to chaotic Dynamical Systems with information obtained in 82 days with continuous learning, day by day, from January 21(th), 2020 to April 12(th). According...
Autores principales: | Arias Velásquez, Ricardo Manuel, Mejía Lara, Jennifer Vanessa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242925/ https://www.ncbi.nlm.nih.gov/pubmed/32501372 http://dx.doi.org/10.1016/j.chaos.2020.109924 |
Ejemplares similares
-
Gaussian approach for probability and correlation between the number of COVID-19 cases and the air pollution in Lima
por: Arias Velásquez, Ricardo Manuel, et al.
Publicado: (2020) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression
por: Ren, Jiahao, et al.
Publicado: (2021) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023)