Cargando…

Trans, trans-2,4-decadienal impairs vascular endothelial function by inducing oxidative/nitrative stress and apoptosis

Aldehydes are implicated in the development of hypertension. Trans, trans-2,4-decadienal (tt-DDE), a dietary α,β-unsaturated aldehyde, is widespread in many food products. However, the role of tt-DDE in the pathophysiology of hypertension remains unknown. This study was designed to investigate wheth...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yuanyuan, Yin, Fawen, Yu, Zhenlong, Peng, Yulin, Zhao, Guanhua, Liu, Zhongyuan, Zhou, Dayong, Ma, Xiaochi, Shahidi, Fereidoon, Zhu, Beiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243189/
https://www.ncbi.nlm.nih.gov/pubmed/32446174
http://dx.doi.org/10.1016/j.redox.2020.101577
Descripción
Sumario:Aldehydes are implicated in the development of hypertension. Trans, trans-2,4-decadienal (tt-DDE), a dietary α,β-unsaturated aldehyde, is widespread in many food products. However, the role of tt-DDE in the pathophysiology of hypertension remains unknown. This study was designed to investigate whether tt-DDE consumption evokes hypertension and to explore the mechanisms underlying such a role. Sprague-Dawley rats were administered different concentrations of tt-DDE. After 28 days, blood pressure and endothelial function of mesenteric arteries were measured. Results showed that tt-DDE treatment significantly increased blood pressure and impaired endothelial function based on endothelium-dependent vasorelaxation and p-VASP levels. Mechanistically, tt-DDE induced oxidative/nitrative stress in the arteries of rats as evidenced by overproductions of superoxide and peroxynitrite, accompanied with increased expressions of iNOS and gp91(phox). To further investigate the effects of tt-DDE on endothelial cells and underlying mechanisms, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of tt-DDE. tt-DDE induced oxidative/nitrative stress in HUVECs. Moreover, tt-DDE induced endothelial cells apoptosis through JNK-mediated signaling pathway. These results show, for the first time, that oral intake of tt-DDE elevates blood pressure and induces endothelial dysfunction in rats through oxidative/nitrative stress and JNK-mediated apoptosis signaling, indicating that excess ingestion of tt-DDE is a potential risk factor for endothelial dysfunction and hypertension.