Cargando…

Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering

The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block w...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ke, Liu, Xiaohong, Liu, Sixiu, An, Yulong, Shen, Yanfang, Sun, Qingxia, Shi, Xiaodong, Su, Wenji, Cui, Weiren, Duan, Zhiqiang, Kuai, Letian, Yang, Hongfang, Satz, Alexander L., Chen, Kaixian, Jiang, Hualiang, Zheng, Mingyue, Peng, Xuanjia, Lu, Xiaojie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243192/
https://www.ncbi.nlm.nih.gov/pubmed/32446221
http://dx.doi.org/10.1016/j.isci.2020.101142
_version_ 1783537381341659136
author Li, Ke
Liu, Xiaohong
Liu, Sixiu
An, Yulong
Shen, Yanfang
Sun, Qingxia
Shi, Xiaodong
Su, Wenji
Cui, Weiren
Duan, Zhiqiang
Kuai, Letian
Yang, Hongfang
Satz, Alexander L.
Chen, Kaixian
Jiang, Hualiang
Zheng, Mingyue
Peng, Xuanjia
Lu, Xiaojie
author_facet Li, Ke
Liu, Xiaohong
Liu, Sixiu
An, Yulong
Shen, Yanfang
Sun, Qingxia
Shi, Xiaodong
Su, Wenji
Cui, Weiren
Duan, Zhiqiang
Kuai, Letian
Yang, Hongfang
Satz, Alexander L.
Chen, Kaixian
Jiang, Hualiang
Zheng, Mingyue
Peng, Xuanjia
Lu, Xiaojie
author_sort Li, Ke
collection PubMed
description The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block with a model DNA-conjugate. We exemplify the value of this technique with a challenging reaction, the Pictet-Spengler, where acidic conditions are normally required to achieve the desired cyclization between tryptophan and aldehydes to provide tryptolines. This is the first demonstration of using a machine learning algorithm to cull potential building blocks prior to their purchase and testing for DNA-encoded library synthesis. Importantly, this allows for a challenging reaction, with an otherwise very low building block pass rate in the test reaction, to still be used in DEL synthesis. Furthermore, because our protocol is solution phase it is directly applicable to standard plate-based DEL synthesis.
format Online
Article
Text
id pubmed-7243192
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-72431922020-05-26 Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering Li, Ke Liu, Xiaohong Liu, Sixiu An, Yulong Shen, Yanfang Sun, Qingxia Shi, Xiaodong Su, Wenji Cui, Weiren Duan, Zhiqiang Kuai, Letian Yang, Hongfang Satz, Alexander L. Chen, Kaixian Jiang, Hualiang Zheng, Mingyue Peng, Xuanjia Lu, Xiaojie iScience Article The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block with a model DNA-conjugate. We exemplify the value of this technique with a challenging reaction, the Pictet-Spengler, where acidic conditions are normally required to achieve the desired cyclization between tryptophan and aldehydes to provide tryptolines. This is the first demonstration of using a machine learning algorithm to cull potential building blocks prior to their purchase and testing for DNA-encoded library synthesis. Importantly, this allows for a challenging reaction, with an otherwise very low building block pass rate in the test reaction, to still be used in DEL synthesis. Furthermore, because our protocol is solution phase it is directly applicable to standard plate-based DEL synthesis. Elsevier 2020-05-07 /pmc/articles/PMC7243192/ /pubmed/32446221 http://dx.doi.org/10.1016/j.isci.2020.101142 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Li, Ke
Liu, Xiaohong
Liu, Sixiu
An, Yulong
Shen, Yanfang
Sun, Qingxia
Shi, Xiaodong
Su, Wenji
Cui, Weiren
Duan, Zhiqiang
Kuai, Letian
Yang, Hongfang
Satz, Alexander L.
Chen, Kaixian
Jiang, Hualiang
Zheng, Mingyue
Peng, Xuanjia
Lu, Xiaojie
Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
title Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
title_full Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
title_fullStr Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
title_full_unstemmed Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
title_short Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
title_sort solution-phase dna-compatible pictet-spengler reaction aided by machine learning building block filtering
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243192/
https://www.ncbi.nlm.nih.gov/pubmed/32446221
http://dx.doi.org/10.1016/j.isci.2020.101142
work_keys_str_mv AT like solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT liuxiaohong solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT liusixiu solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT anyulong solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT shenyanfang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT sunqingxia solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT shixiaodong solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT suwenji solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT cuiweiren solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT duanzhiqiang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT kuailetian solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT yanghongfang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT satzalexanderl solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT chenkaixian solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT jianghualiang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT zhengmingyue solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT pengxuanjia solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering
AT luxiaojie solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering