Cargando…
Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering
The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block w...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243192/ https://www.ncbi.nlm.nih.gov/pubmed/32446221 http://dx.doi.org/10.1016/j.isci.2020.101142 |
_version_ | 1783537381341659136 |
---|---|
author | Li, Ke Liu, Xiaohong Liu, Sixiu An, Yulong Shen, Yanfang Sun, Qingxia Shi, Xiaodong Su, Wenji Cui, Weiren Duan, Zhiqiang Kuai, Letian Yang, Hongfang Satz, Alexander L. Chen, Kaixian Jiang, Hualiang Zheng, Mingyue Peng, Xuanjia Lu, Xiaojie |
author_facet | Li, Ke Liu, Xiaohong Liu, Sixiu An, Yulong Shen, Yanfang Sun, Qingxia Shi, Xiaodong Su, Wenji Cui, Weiren Duan, Zhiqiang Kuai, Letian Yang, Hongfang Satz, Alexander L. Chen, Kaixian Jiang, Hualiang Zheng, Mingyue Peng, Xuanjia Lu, Xiaojie |
author_sort | Li, Ke |
collection | PubMed |
description | The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block with a model DNA-conjugate. We exemplify the value of this technique with a challenging reaction, the Pictet-Spengler, where acidic conditions are normally required to achieve the desired cyclization between tryptophan and aldehydes to provide tryptolines. This is the first demonstration of using a machine learning algorithm to cull potential building blocks prior to their purchase and testing for DNA-encoded library synthesis. Importantly, this allows for a challenging reaction, with an otherwise very low building block pass rate in the test reaction, to still be used in DEL synthesis. Furthermore, because our protocol is solution phase it is directly applicable to standard plate-based DEL synthesis. |
format | Online Article Text |
id | pubmed-7243192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-72431922020-05-26 Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering Li, Ke Liu, Xiaohong Liu, Sixiu An, Yulong Shen, Yanfang Sun, Qingxia Shi, Xiaodong Su, Wenji Cui, Weiren Duan, Zhiqiang Kuai, Letian Yang, Hongfang Satz, Alexander L. Chen, Kaixian Jiang, Hualiang Zheng, Mingyue Peng, Xuanjia Lu, Xiaojie iScience Article The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block with a model DNA-conjugate. We exemplify the value of this technique with a challenging reaction, the Pictet-Spengler, where acidic conditions are normally required to achieve the desired cyclization between tryptophan and aldehydes to provide tryptolines. This is the first demonstration of using a machine learning algorithm to cull potential building blocks prior to their purchase and testing for DNA-encoded library synthesis. Importantly, this allows for a challenging reaction, with an otherwise very low building block pass rate in the test reaction, to still be used in DEL synthesis. Furthermore, because our protocol is solution phase it is directly applicable to standard plate-based DEL synthesis. Elsevier 2020-05-07 /pmc/articles/PMC7243192/ /pubmed/32446221 http://dx.doi.org/10.1016/j.isci.2020.101142 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Li, Ke Liu, Xiaohong Liu, Sixiu An, Yulong Shen, Yanfang Sun, Qingxia Shi, Xiaodong Su, Wenji Cui, Weiren Duan, Zhiqiang Kuai, Letian Yang, Hongfang Satz, Alexander L. Chen, Kaixian Jiang, Hualiang Zheng, Mingyue Peng, Xuanjia Lu, Xiaojie Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering |
title | Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering |
title_full | Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering |
title_fullStr | Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering |
title_full_unstemmed | Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering |
title_short | Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering |
title_sort | solution-phase dna-compatible pictet-spengler reaction aided by machine learning building block filtering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243192/ https://www.ncbi.nlm.nih.gov/pubmed/32446221 http://dx.doi.org/10.1016/j.isci.2020.101142 |
work_keys_str_mv | AT like solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT liuxiaohong solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT liusixiu solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT anyulong solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT shenyanfang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT sunqingxia solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT shixiaodong solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT suwenji solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT cuiweiren solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT duanzhiqiang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT kuailetian solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT yanghongfang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT satzalexanderl solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT chenkaixian solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT jianghualiang solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT zhengmingyue solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT pengxuanjia solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering AT luxiaojie solutionphasednacompatiblepictetspenglerreactionaidedbymachinelearningbuildingblockfiltering |