Cargando…

Fluent genomics with  plyranges and  tximeta

We construct a simple workflow for fluent genomics data analysis using the R/Bioconductor ecosystem. This involves three core steps: import the data into an appropriate abstraction, model the data with respect to the biological questions of interest, and integrate the results with respect to their u...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Stuart, Lawrence, Michael, Love, Michael I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243206/
https://www.ncbi.nlm.nih.gov/pubmed/32528659
http://dx.doi.org/10.12688/f1000research.22259.1
_version_ 1783537384272429056
author Lee, Stuart
Lawrence, Michael
Love, Michael I.
author_facet Lee, Stuart
Lawrence, Michael
Love, Michael I.
author_sort Lee, Stuart
collection PubMed
description We construct a simple workflow for fluent genomics data analysis using the R/Bioconductor ecosystem. This involves three core steps: import the data into an appropriate abstraction, model the data with respect to the biological questions of interest, and integrate the results with respect to their underlying genomic coordinates. Here we show how to implement these steps to integrate published RNA-seq and ATAC-seq experiments on macrophage cell lines. Using tximeta, we import RNA-seq transcript quantifications into an analysis-ready data structure, called the SummarizedExperiment, that contains the ranges of the reference transcripts and metadata on their provenance. Using SummarizedExperiments to represent the ATAC-seq and RNA-seq data, we model differentially accessible (DA) chromatin peaks and differentially expressed (DE) genes with existing Bioconductor packages. Using plyranges we then integrate the results to see if there is an enrichment of DA peaks near DE genes by finding overlaps and aggregating over log-fold change thresholds. The combination of these packages and their integration with the Bioconductor ecosystem provide a coherent framework for analysts to iteratively and reproducibly explore their biological data.
format Online
Article
Text
id pubmed-7243206
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-72432062020-06-10 Fluent genomics with  plyranges and  tximeta Lee, Stuart Lawrence, Michael Love, Michael I. F1000Res Method Article We construct a simple workflow for fluent genomics data analysis using the R/Bioconductor ecosystem. This involves three core steps: import the data into an appropriate abstraction, model the data with respect to the biological questions of interest, and integrate the results with respect to their underlying genomic coordinates. Here we show how to implement these steps to integrate published RNA-seq and ATAC-seq experiments on macrophage cell lines. Using tximeta, we import RNA-seq transcript quantifications into an analysis-ready data structure, called the SummarizedExperiment, that contains the ranges of the reference transcripts and metadata on their provenance. Using SummarizedExperiments to represent the ATAC-seq and RNA-seq data, we model differentially accessible (DA) chromatin peaks and differentially expressed (DE) genes with existing Bioconductor packages. Using plyranges we then integrate the results to see if there is an enrichment of DA peaks near DE genes by finding overlaps and aggregating over log-fold change thresholds. The combination of these packages and their integration with the Bioconductor ecosystem provide a coherent framework for analysts to iteratively and reproducibly explore their biological data. F1000 Research Limited 2020-02-12 /pmc/articles/PMC7243206/ /pubmed/32528659 http://dx.doi.org/10.12688/f1000research.22259.1 Text en Copyright: © 2020 Lee S et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method Article
Lee, Stuart
Lawrence, Michael
Love, Michael I.
Fluent genomics with  plyranges and  tximeta
title Fluent genomics with  plyranges and  tximeta
title_full Fluent genomics with  plyranges and  tximeta
title_fullStr Fluent genomics with  plyranges and  tximeta
title_full_unstemmed Fluent genomics with  plyranges and  tximeta
title_short Fluent genomics with  plyranges and  tximeta
title_sort fluent genomics with  plyranges and  tximeta
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243206/
https://www.ncbi.nlm.nih.gov/pubmed/32528659
http://dx.doi.org/10.12688/f1000research.22259.1
work_keys_str_mv AT leestuart fluentgenomicswithplyrangesandtximeta
AT lawrencemichael fluentgenomicswithplyrangesandtximeta
AT lovemichaeli fluentgenomicswithplyrangesandtximeta