Cargando…

Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4

AIMS: Circular RNAs (circRNAs) are involved in gene regulation in a variety of physiological and pathological processes. The present study aimed to investigate the effect of circRNA_000203 on cardiac hypertrophy and the potential mechanisms involved. METHODS AND RESULTS: CircRNA_000203 was found to...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hui, Xu, Jin-Dong, Fang, Xian-Hong, Zhu, Jie-Ning, Yang, Jing, Pan, Rong, Yuan, Shu-Jing, Zeng, Ni, Yang, Zhen-Zhen, Yang, Hui, Wang, Xi-Pei, Duan, Jin-Zhu, Wang, Sheng, Luo, Jian-Fang, Wu, Shu-Lin, Shan, Zhi-Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243276/
https://www.ncbi.nlm.nih.gov/pubmed/31397837
http://dx.doi.org/10.1093/cvr/cvz215
Descripción
Sumario:AIMS: Circular RNAs (circRNAs) are involved in gene regulation in a variety of physiological and pathological processes. The present study aimed to investigate the effect of circRNA_000203 on cardiac hypertrophy and the potential mechanisms involved. METHODS AND RESULTS: CircRNA_000203 was found to be up-regulated in the myocardium of Ang-II-infused mice and in the cytoplasma of Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Enforced expression of circRNA_000203 enhances cell size and expression of atrial natriuretic peptide and β-myosin heavy chain in NMVCs. In vivo, heart function was impaired and cardiac hypertrophy was aggravated in Ang-II-infused myocardium-specific circRNA_000203 transgenic mice (Tg-circ203). Mechanistically, we found that circRNA_000203 could specifically sponge miR-26b-5p, -140-3p in NMVCs. Further, dual-luciferase reporter assay showed that miR-26b-5p, -140-3p could interact with 3′-UTRs of Gata4 gene, and circRNA_000203 could block the above interactions. In addition, Gata4 expression is transcriptionally inhibited by miR-26b-5p, -140-3p mimic in NMVCs but enhanced by over-expression of circRNA_000203 in vitro and in vivo. Functionally, miR-26b-5p, -140-3p, and Gata4 siRNA, could reverse the hypertrophic growth in Ang-II-induced NMVCs, as well as eliminate the pro-hypertrophic effect of circRNA_000203 in NMVCs. Furthermore, we demonstrated that NF-κB signalling mediates the up-regulation of circRNA_000203 in NMVCs exposed to Ang-II treatment. CONCLUSIONS: Our data demonstrated that circRNA_000203 exacerbates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p leading to enhanced Gata4 levels.