Cargando…

Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic β-Cell Death in Uricase-Deficient Male Mice

Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontane...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jie, He, Yuwei, Cui, Lingling, Xing, Xiaoming, Liu, Zhen, Li, Xinde, Zhang, Hui, Li, Hailong, Sun, Wenyan, Ji, Aichang, Wang, Yao, Yin, Huiyong, Li, Changgui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243290/
https://www.ncbi.nlm.nih.gov/pubmed/32312870
http://dx.doi.org/10.2337/db19-0704
Descripción
Sumario:Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering therapy (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal–associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival.