Cargando…
From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration
While interacting with the world our senses and nervous system are constantly challenged to identify the origin and coherence of sensory input signals of various intensities. This problem becomes apparent when stimuli from different modalities need to be combined, e.g., to find out whether an audito...
Autores principales: | Oess, Timo, Löhr, Maximilian P. R., Schmid, Daniel, Ernst, Marc O., Neumann, Heiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243343/ https://www.ncbi.nlm.nih.gov/pubmed/32499692 http://dx.doi.org/10.3389/fnbot.2020.00029 |
Ejemplares similares
-
Computational principles of neural adaptation for binaural signal integration
por: Oess, Timo, et al.
Publicado: (2020) -
Listen to the Brain–Auditory Sound Source Localization in Neuromorphic Computing Architectures
por: Schmid, Daniel, et al.
Publicado: (2023) -
Parallelization of Neural Processing on Neuromorphic Hardware
por: Peres, Luca, et al.
Publicado: (2022) -
Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI
por: Xiao, Chao, et al.
Publicado: (2022) -
Multisensory integration using dynamical Bayesian networks
por: Abbas Shangari, Taher, et al.
Publicado: (2015)