Cargando…

Immunotherapy of ovarian cancer with a monoclonal antibody specific for the extracellular domain of anti-Müllerian hormone receptor II

Epithelial ovarian carcinoma (EOC) is the most prevalent and lethal form of ovarian cancer. The low five-year overall survival after EOC diagnosis indicates an urgent need for more effective ways to control this disease. Anti-Müllerian hormone receptor 2 (AMHR2) is an ovarian protein overexpressed i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mazumder, Suparna, Swank, Valerie, Komar, Anton A., Johnson, Justin M., Tuohy, Vincent K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244012/
https://www.ncbi.nlm.nih.gov/pubmed/32499873
http://dx.doi.org/10.18632/oncotarget.27585
Descripción
Sumario:Epithelial ovarian carcinoma (EOC) is the most prevalent and lethal form of ovarian cancer. The low five-year overall survival after EOC diagnosis indicates an urgent need for more effective ways to control this disease. Anti-Müllerian hormone receptor 2 (AMHR2) is an ovarian protein overexpressed in the majority of human EOCs. We have previously found that vaccination against the ovarian-specific extracellular domain of AMHR2 (AMHR2-ED) significantly inhibits growth of murine EOCs through an IgG-mediated mechanism that agonizes receptor signaling of a Bax/caspase-3 dependent proapoptotic cascade. To determine if a single monoclonal antibody (mAb) could inhibit growth of human EOC, we generated a panel of mAbs specific for recombinant human AMHR2-ED and characterized a candidate mAb for humanization and use in clinical trials. We found that our candidate 4D12G1 mAb is an IgG(1) that shows high affinity antigen-specific binding to the 7-mer (20)KTLGELL(26) sequence of AMHR2-ED that facilitates induction of programmed cell death in EOC cells. Most importantly, the 4D12G1 mAb significantly inhibits growth of primary human EOCs in patient-derived xenografts (PDXs) by inducing direct apoptosis of EOC tumors. Our results support the view that a humanized 4D12G1 mAb may be a much needed and effective reagent for passive immunotherapy of human EOC.