Cargando…
Exenatide inhibits NF-κB and attenuates ER stress in diabetic cardiomyocyte models
Exenatide is used to treat patients with type-2 diabetes and it also exerts cardioprotective effects. Here, we tested whether Exenatide attenuates hyperglycemia-related cardiomyocyte damage by inhibiting endoplasmic reticulum (ER) stress and the NF-κB signaling pathway. Our results demonstrated that...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244034/ https://www.ncbi.nlm.nih.gov/pubmed/32392536 http://dx.doi.org/10.18632/aging.103181 |
Sumario: | Exenatide is used to treat patients with type-2 diabetes and it also exerts cardioprotective effects. Here, we tested whether Exenatide attenuates hyperglycemia-related cardiomyocyte damage by inhibiting endoplasmic reticulum (ER) stress and the NF-κB signaling pathway. Our results demonstrated that hyperglycemia activates the NF-κB signaling pathway, eliciting ER stress. We also observed cardiomyocyte contractile dysfunction, inflammation, and cell apoptosis induced by hyperglycemia. Exenatide treatment inhibited inflammation, improved cardiomyocyte contractile function, and rescued cardiomyocyte viability. Notably, re-activation of the NF-κB signaling pathway abolished Exenatide’s protective effects on hyperglycemic cardiomyocytes. Taken together, our results demonstrate that Exenatide directly reduces hyperglycemia-induced cardiomyocyte damage by inhibiting ER stress and inactivating the NF-κB signaling pathway. |
---|