Cargando…

Nur77 attenuates inflammatory responses and oxidative stress by inhibiting phosphorylated IκB-α in Parkinson’s disease cell model

Neuroinflammation and oxidative stress play key roles in the pathological development of Parkinson’s disease (PD). Nerve growth factor-induced gene B (Nur77) is closely related to dopamine neurotransmission, and its pathogenesis is unclear. This study aims to investigate the role and mechanism of Nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Junqiang, Huang, Jiarui, Wu, Jiannan, Fan, Hua, Liu, Anran, Qiao, Liang, Shen, Mengmeng, Lai, Xiaoyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244064/
https://www.ncbi.nlm.nih.gov/pubmed/32401747
http://dx.doi.org/10.18632/aging.103128
Descripción
Sumario:Neuroinflammation and oxidative stress play key roles in the pathological development of Parkinson’s disease (PD). Nerve growth factor-induced gene B (Nur77) is closely related to dopamine neurotransmission, and its pathogenesis is unclear. This study aims to investigate the role and mechanism of Nur77 in a cell model of Parkinson’s disease. Silencing Nur77 with siRNA can aggravate intracellular LDH release, increase the expression of pro-inflammatory genes (such as tumor necrosis factor α, nuclear factor κB (p65), monocyte chemotactic protein 1, interleukin-6), and decrease cell survival, decrease expression of nuclear factor E2-related factor(Nrf2), heme oxygenase 1, NADPH quinineoxidoreductase-1. Cytosporone B (Nur77 agonist) has the opposite effect to Nur77 silencing. PDTC (NF-κB inhibitor / antioxidant) can also inhibit pro-inflammatory genes to a similar degree as Cytosporone B. Phosphorylated IκB-α can be inhibited by Cytosporone B, while silencing Nur77 can increase the protein expression level of phosphorylated IκB-α. After silencing IκB-α, both Cytosporone B and siNur77 did not affect pro-inflammatory genes and antioxidant stress. These findings reveal the first evidence that Nur77 exerts anti-inflammatory and antioxidant stress effects by inhibiting IκB-α phosphorylation expression in a Parkinson cell model. Nur77 may be a potential therapeutic target for Parkinson’s disease.