Cargando…
A new method of Bayesian causal inference in non-stationary environments
Bayesian inference is the process of narrowing down the hypotheses (causes) to the one that best explains the observational data (effects). To accurately estimate a cause, a considerable amount of data is required to be observed for as long as possible. However, the object of inference is not always...
Autores principales: | Shinohara, Shuji, Manome, Nobuhito, Suzuki, Kouta, Chung, Ung-il, Takahashi, Tatsuji, Okamoto, Hiroshi, Gunji, Yukio Pegio, Nakajima, Yoshihiro, Mitsuyoshi, Shunji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244155/ https://www.ncbi.nlm.nih.gov/pubmed/32442220 http://dx.doi.org/10.1371/journal.pone.0233559 |
Ejemplares similares
-
Lévy Walk in Swarm Models Based on Bayesian and Inverse Bayesian Inference
por: Gunji, Yukio-Pegio, et al.
Publicado: (2020) -
Self-incremental learning vector quantization with human cognitive biases
por: Manome, Nobuhito, et al.
Publicado: (2021) -
Inverse Bayesian inference in swarming behaviour of soldier crabs
por: Gunji, Yukio-Pegio, et al.
Publicado: (2018) -
Connecting the free energy principle with quantum cognition
por: Gunji, Yukio-Pegio, et al.
Publicado: (2022) -
Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables
por: Yin, Yu, et al.
Publicado: (2016)