Cargando…
A biochemically-interpretable machine learning classifier for microbial GWAS
Current machine learning classifiers have successfully been applied to whole-genome sequencing data to identify genetic determinants of antimicrobial resistance (AMR), but they lack causal interpretation. Here we present a metabolic model-based machine learning classifier, named Metabolic Allele Cla...
Autores principales: | Kavvas, Erol S., Yang, Laurence, Monk, Jonathan M., Heckmann, David, Palsson, Bernhard O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244534/ https://www.ncbi.nlm.nih.gov/pubmed/32444610 http://dx.doi.org/10.1038/s41467-020-16310-9 |
Ejemplares similares
-
Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens
por: Hyun, Jason C., et al.
Publicado: (2020) -
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
por: Kavvas, Erol S., et al.
Publicado: (2018) -
Systems Biology and Pangenome of Salmonella O-Antigens
por: Seif, Yara, et al.
Publicado: (2019) -
Independent component analysis recovers consistent regulatory signals from disparate datasets
por: Sastry, Anand V., et al.
Publicado: (2021) -
iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE
por: Norsigian, Charles J., et al.
Publicado: (2018)