Cargando…
Using publicly available satellite imagery and deep learning to understand economic well-being in Africa
Accurate and comprehensive measurements of economic well-being are fundamental inputs into both research and policy, but such measures are unavailable at a local level in many parts of the world. Here we train deep learning models to predict survey-based estimates of asset wealth across ~ 20,000 Afr...
Autores principales: | Yeh, Christopher, Perez, Anthony, Driscoll, Anne, Azzari, George, Tang, Zhongyi, Lobell, David, Ermon, Stefano, Burke, Marshall |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244551/ https://www.ncbi.nlm.nih.gov/pubmed/32444658 http://dx.doi.org/10.1038/s41467-020-16185-w |
Ejemplares similares
-
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020) -
Scalable deep learning to identify brick kilns and aid regulatory capacity
por: Lee, Jihyeon, et al.
Publicado: (2021) -
Estimating food resource availability in arid environments with Sentinel 2 satellite imagery
por: Funghi, Caterina, et al.
Publicado: (2020) -
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
A human-machine collaborative approach measures economic development using satellite imagery
por: Ahn, Donghyun, et al.
Publicado: (2023)