Cargando…
Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction
This work aimed to use artificial intelligence to predict subjective refraction from wavefront aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms were trained to...
Autores principales: | Rampat, Radhika, Debellemanière, Guillaume, Malet, Jacques, Gatinel, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244728/ https://www.ncbi.nlm.nih.gov/pubmed/32444650 http://dx.doi.org/10.1038/s41598-020-65417-y |
Ejemplares similares
-
Theoretical Relationship Among Effective Lens Position, Predicted Refraction, and Corneal and Intraocular Lens Power in a Pseudophakic Eye Model
por: Gatinel, Damien, et al.
Publicado: (2022) -
Wavefront sensing, novel lower degree/higher degree polynomial decomposition and its recent clinical applications: A review
por: Rampat, Radhika, et al.
Publicado: (2020) -
Theoretical Impact of Intraocular Lens Design Variations on the Accuracy of IOL Power Calculations
por: Gatinel, Damien, et al.
Publicado: (2023) -
Impact of Single Constant Optimization on the Precision of IOL Power Calculation
por: Gatinel, Damien, et al.
Publicado: (2023) -
Determining the Theoretical Effective Lens Position of Thick Intraocular Lenses for Machine Learning–Based IOL Power Calculation and Simulation
por: Gatinel, Damien, et al.
Publicado: (2021)