Cargando…

Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs

BACKGROUND: Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3′ part of SINEs usually originate...

Descripción completa

Detalles Bibliográficos
Autor principal: Kojima, Kenji K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245038/
https://www.ncbi.nlm.nih.gov/pubmed/32489435
http://dx.doi.org/10.1186/s13100-020-00210-2
_version_ 1783537684078133248
author Kojima, Kenji K.
author_facet Kojima, Kenji K.
author_sort Kojima, Kenji K.
collection PubMed
description BACKGROUND: Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3′ part of SINEs usually originated from that of counterpart non-LTR retrotransposons. The 5′ part of SINEs mostly originated from small RNA genes. SINE1 is a group of SINEs whose 5′ part originated from 7SL RNA, and is represented by primate Alu and murine B1. Well-defined SINE1 has been found only from Euarchontoglires, a group of mammals, in contrast to the wide distribution of SINE2, which has a tRNA-derived sequence, from animals to plants to protists. Both Alu and B1 are mobilized by L1-type non-LTR retrotransposons, which are the only lineage of autonomous non-LTR retrotransposons active in these mammalian lineages. RESULTS: Here a new lineage of SINE1 is characterized from the seashore hagfish Eptatretus burgeri genome. This SINE1 family, designated SINE1-1_EBu, is young, and is transposed by RTE-type non-LTR retrotransposon, not L1-type. Comparison with other SINE families from hagfish indicated the birth of SINE1-1_EBu through chimera formation of a 7SL RNA-derived sequence and an older tRNA-derived SINE family. It reveals parallel evolution of SINE1 in two vertebrate lineages with different autonomous non-LTR retrotransposon partners. The comparison between two SINE1 lineages supports that the RNA secondary structure of the Alu domain of 7SL RNA is required for the efficient retrotransposition. CONCLUSIONS: The hagfish SINE1 is the first evident SINE1 family found outside of Euarchontoglires. Independent evolution of SINE1 with similar RNA secondary structure originated in 7SL RNA indicates the functional importance of 7SL RNA-derived sequence in the proliferation of SINEs.
format Online
Article
Text
id pubmed-7245038
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-72450382020-06-01 Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs Kojima, Kenji K. Mob DNA Research BACKGROUND: Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3′ part of SINEs usually originated from that of counterpart non-LTR retrotransposons. The 5′ part of SINEs mostly originated from small RNA genes. SINE1 is a group of SINEs whose 5′ part originated from 7SL RNA, and is represented by primate Alu and murine B1. Well-defined SINE1 has been found only from Euarchontoglires, a group of mammals, in contrast to the wide distribution of SINE2, which has a tRNA-derived sequence, from animals to plants to protists. Both Alu and B1 are mobilized by L1-type non-LTR retrotransposons, which are the only lineage of autonomous non-LTR retrotransposons active in these mammalian lineages. RESULTS: Here a new lineage of SINE1 is characterized from the seashore hagfish Eptatretus burgeri genome. This SINE1 family, designated SINE1-1_EBu, is young, and is transposed by RTE-type non-LTR retrotransposon, not L1-type. Comparison with other SINE families from hagfish indicated the birth of SINE1-1_EBu through chimera formation of a 7SL RNA-derived sequence and an older tRNA-derived SINE family. It reveals parallel evolution of SINE1 in two vertebrate lineages with different autonomous non-LTR retrotransposon partners. The comparison between two SINE1 lineages supports that the RNA secondary structure of the Alu domain of 7SL RNA is required for the efficient retrotransposition. CONCLUSIONS: The hagfish SINE1 is the first evident SINE1 family found outside of Euarchontoglires. Independent evolution of SINE1 with similar RNA secondary structure originated in 7SL RNA indicates the functional importance of 7SL RNA-derived sequence in the proliferation of SINEs. BioMed Central 2020-05-22 /pmc/articles/PMC7245038/ /pubmed/32489435 http://dx.doi.org/10.1186/s13100-020-00210-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Kojima, Kenji K.
Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs
title Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs
title_full Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs
title_fullStr Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs
title_full_unstemmed Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs
title_short Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs
title_sort hagfish genome reveals parallel evolution of 7sl rna-derived sines
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245038/
https://www.ncbi.nlm.nih.gov/pubmed/32489435
http://dx.doi.org/10.1186/s13100-020-00210-2
work_keys_str_mv AT kojimakenjik hagfishgenomerevealsparallelevolutionof7slrnaderivedsines