Cargando…
Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245687/ https://www.ncbi.nlm.nih.gov/pubmed/32508537 http://dx.doi.org/10.1155/2020/3192852 |
_version_ | 1783537795699048448 |
---|---|
author | Lukman, Adewale F. Ayinde, Kayode Golam Kibria, B. M. Jegede, Segun L. |
author_facet | Lukman, Adewale F. Ayinde, Kayode Golam Kibria, B. M. Jegede, Segun L. |
author_sort | Lukman, Adewale F. |
collection | PubMed |
description | The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators. |
format | Online Article Text |
id | pubmed-7245687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-72456872020-06-05 Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model Lukman, Adewale F. Ayinde, Kayode Golam Kibria, B. M. Jegede, Segun L. ScientificWorldJournal Research Article The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators. Hindawi 2020-05-15 /pmc/articles/PMC7245687/ /pubmed/32508537 http://dx.doi.org/10.1155/2020/3192852 Text en Copyright © 2020 Adewale F. Lukman et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lukman, Adewale F. Ayinde, Kayode Golam Kibria, B. M. Jegede, Segun L. Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model |
title | Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model |
title_full | Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model |
title_fullStr | Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model |
title_full_unstemmed | Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model |
title_short | Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model |
title_sort | two-parameter modified ridge-type m-estimator for linear regression model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245687/ https://www.ncbi.nlm.nih.gov/pubmed/32508537 http://dx.doi.org/10.1155/2020/3192852 |
work_keys_str_mv | AT lukmanadewalef twoparametermodifiedridgetypemestimatorforlinearregressionmodel AT ayindekayode twoparametermodifiedridgetypemestimatorforlinearregressionmodel AT golamkibriabm twoparametermodifiedridgetypemestimatorforlinearregressionmodel AT jegedesegunl twoparametermodifiedridgetypemestimatorforlinearregressionmodel |