Cargando…

Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model

The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which l...

Descripción completa

Detalles Bibliográficos
Autores principales: Lukman, Adewale F., Ayinde, Kayode, Golam Kibria, B. M., Jegede, Segun L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245687/
https://www.ncbi.nlm.nih.gov/pubmed/32508537
http://dx.doi.org/10.1155/2020/3192852
_version_ 1783537795699048448
author Lukman, Adewale F.
Ayinde, Kayode
Golam Kibria, B. M.
Jegede, Segun L.
author_facet Lukman, Adewale F.
Ayinde, Kayode
Golam Kibria, B. M.
Jegede, Segun L.
author_sort Lukman, Adewale F.
collection PubMed
description The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators.
format Online
Article
Text
id pubmed-7245687
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-72456872020-06-05 Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model Lukman, Adewale F. Ayinde, Kayode Golam Kibria, B. M. Jegede, Segun L. ScientificWorldJournal Research Article The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators. Hindawi 2020-05-15 /pmc/articles/PMC7245687/ /pubmed/32508537 http://dx.doi.org/10.1155/2020/3192852 Text en Copyright © 2020 Adewale F. Lukman et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lukman, Adewale F.
Ayinde, Kayode
Golam Kibria, B. M.
Jegede, Segun L.
Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
title Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
title_full Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
title_fullStr Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
title_full_unstemmed Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
title_short Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model
title_sort two-parameter modified ridge-type m-estimator for linear regression model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245687/
https://www.ncbi.nlm.nih.gov/pubmed/32508537
http://dx.doi.org/10.1155/2020/3192852
work_keys_str_mv AT lukmanadewalef twoparametermodifiedridgetypemestimatorforlinearregressionmodel
AT ayindekayode twoparametermodifiedridgetypemestimatorforlinearregressionmodel
AT golamkibriabm twoparametermodifiedridgetypemestimatorforlinearregressionmodel
AT jegedesegunl twoparametermodifiedridgetypemestimatorforlinearregressionmodel