Cargando…
Multichart Schemes for Detecting Changes in Disease Incidence
Several methods have been proposed in open literatures for detecting changes in disease outbreak or incidence. Most of these methods are likelihood-based as well as the direct application of Shewhart, CUSUM and EWMA schemes. We use CUSUM, EWMA and EWMA-CUSUM multi-chart schemes to detect changes in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245694/ https://www.ncbi.nlm.nih.gov/pubmed/32508978 http://dx.doi.org/10.1155/2020/7267801 |
Sumario: | Several methods have been proposed in open literatures for detecting changes in disease outbreak or incidence. Most of these methods are likelihood-based as well as the direct application of Shewhart, CUSUM and EWMA schemes. We use CUSUM, EWMA and EWMA-CUSUM multi-chart schemes to detect changes in disease incidence. Multi-chart is a combination of several single charts that detects changes in a process and have been shown to have elegant properties in the sense that they are fast in detecting changes in a process as well as being computationally less expensive. Simulation results show that the multi-CUSUM chart is faster than EWMA and EWMA-CUSUM multi-charts in detecting shifts in the rate parameter. A real illustration with health data is used to demonstrate the efficiency of the schemes. |
---|