Cargando…
Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella
BACKGROUND AND AIM: Spilanthes acmella is used for the treatment of intestinal helminth infections in Mizo traditional medicine. In spite of a variety of drugs developed for helminthiases, an entirely safe and absolutely effective drug is still lacking, so much so that infections remain a major prob...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Veterinary World
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245699/ https://www.ncbi.nlm.nih.gov/pubmed/32546932 http://dx.doi.org/10.14202/vetworld.2020.821-826 |
_version_ | 1783537798095044608 |
---|---|
author | Lalthanpuii, Pawi Bawitlung Lalchhandama, Kholhring |
author_facet | Lalthanpuii, Pawi Bawitlung Lalchhandama, Kholhring |
author_sort | Lalthanpuii, Pawi Bawitlung |
collection | PubMed |
description | BACKGROUND AND AIM: Spilanthes acmella is used for the treatment of intestinal helminth infections in Mizo traditional medicine. In spite of a variety of drugs developed for helminthiases, an entirely safe and absolutely effective drug is still lacking, so much so that infections remain a major problem in human and animal welfare. In this study, we attempted to substantiate S. acmella as an anticestodal agent. MATERIALS AND METHODS: The aqueous extract of the aerial parts of S. acmella was prepared and from it a bioactive fraction was obtained using column chromatography. Chemical analyses were done using thin-layer chromatography (TLC) and gas chromatography–mass spectrometry (GC–MS). Helminth survival test was performed in vitro on an intestinal cestode, Raillietina tetragona. Structural effects on the cestode were examined under scanning electron microscopy. RESULTS: From the bioactive fraction of S. acmella extract, TLC indicated the presence of an aromatic quinone, which was identified using GC–MS as a quinoline derivative (2,2,4-trimethyl-1,2-dihydroquinoline having a retention time of 24.97 min and chemical formula of C(12)H(15)N). The quinoline-rich fraction showed concentration-dependent activity against R. tetragona as that of albendazole. Scanning electron microscopy of the treated cestode revealed classic anthelmintic effects such as tegumental shrinkage and damage of surface organs. The scolex was shrunk, suckers were degenerated with disintegrated spines, and rostellum was completely collapsed. There were severe damages on the tegument and formation of pit-like scars on the proglottids. CONCLUSION: The efficacy of S. acmella extract and structural damages it caused on the cestode indicates that it is a potential source of anthelmintic agent and that 2,2,4-trimethyl-1,2-dihydroquinoline contributes to its antiparasitic activity. |
format | Online Article Text |
id | pubmed-7245699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Veterinary World |
record_format | MEDLINE/PubMed |
spelling | pubmed-72456992020-06-15 Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella Lalthanpuii, Pawi Bawitlung Lalchhandama, Kholhring Vet World Research Article BACKGROUND AND AIM: Spilanthes acmella is used for the treatment of intestinal helminth infections in Mizo traditional medicine. In spite of a variety of drugs developed for helminthiases, an entirely safe and absolutely effective drug is still lacking, so much so that infections remain a major problem in human and animal welfare. In this study, we attempted to substantiate S. acmella as an anticestodal agent. MATERIALS AND METHODS: The aqueous extract of the aerial parts of S. acmella was prepared and from it a bioactive fraction was obtained using column chromatography. Chemical analyses were done using thin-layer chromatography (TLC) and gas chromatography–mass spectrometry (GC–MS). Helminth survival test was performed in vitro on an intestinal cestode, Raillietina tetragona. Structural effects on the cestode were examined under scanning electron microscopy. RESULTS: From the bioactive fraction of S. acmella extract, TLC indicated the presence of an aromatic quinone, which was identified using GC–MS as a quinoline derivative (2,2,4-trimethyl-1,2-dihydroquinoline having a retention time of 24.97 min and chemical formula of C(12)H(15)N). The quinoline-rich fraction showed concentration-dependent activity against R. tetragona as that of albendazole. Scanning electron microscopy of the treated cestode revealed classic anthelmintic effects such as tegumental shrinkage and damage of surface organs. The scolex was shrunk, suckers were degenerated with disintegrated spines, and rostellum was completely collapsed. There were severe damages on the tegument and formation of pit-like scars on the proglottids. CONCLUSION: The efficacy of S. acmella extract and structural damages it caused on the cestode indicates that it is a potential source of anthelmintic agent and that 2,2,4-trimethyl-1,2-dihydroquinoline contributes to its antiparasitic activity. Veterinary World 2020-04 2020-04-30 /pmc/articles/PMC7245699/ /pubmed/32546932 http://dx.doi.org/10.14202/vetworld.2020.821-826 Text en Copyright: © Lalthanpuii and Lalchhandama. http://creativecommons.org/licenses/by/4.0 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Lalthanpuii, Pawi Bawitlung Lalchhandama, Kholhring Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella |
title | Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella |
title_full | Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella |
title_fullStr | Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella |
title_full_unstemmed | Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella |
title_short | Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella |
title_sort | intestinal cestodes of chicken are effectively killed by quinoline-rich extract of spilanthes acmella |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245699/ https://www.ncbi.nlm.nih.gov/pubmed/32546932 http://dx.doi.org/10.14202/vetworld.2020.821-826 |
work_keys_str_mv | AT lalthanpuiipawibawitlung intestinalcestodesofchickenareeffectivelykilledbyquinolinerichextractofspilanthesacmella AT lalchhandamakholhring intestinalcestodesofchickenareeffectivelykilledbyquinolinerichextractofspilanthesacmella |