Cargando…
Subcellular location prediction of apoptosis proteins using two novel feature extraction methods based on evolutionary information and LDA
BACKGROUND: Apoptosis, also called programmed cell death, refers to the spontaneous and orderly death of cells controlled by genes in order to maintain a stable internal environment. Identifying the subcellular location of apoptosis proteins is very helpful in understanding the mechanism of apoptosi...
Autores principales: | Du, Lei, Meng, Qingfang, Chen, Yuehui, Wu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245797/ https://www.ncbi.nlm.nih.gov/pubmed/32448129 http://dx.doi.org/10.1186/s12859-020-3539-1 |
Ejemplares similares
-
Supporting systematic reviews using LDA-based document representations
por: Mo, Yuanhan, et al.
Publicado: (2015) -
A laminar augmented cascading flexible neural forest model for classification of cancer subtypes based on gene expression data
por: Zhong, Lianxin, et al.
Publicado: (2021) -
Prediction of subcellular location of apoptosis proteins by incorporating PsePSSM and DCCA coefficient based on LFDA dimensionality reduction
por: Yu, Bin, et al.
Publicado: (2018) -
LocateP: Genome-scale subcellular-location predictor for bacterial proteins
por: Zhou, Miaomiao, et al.
Publicado: (2008) -
A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
por: Xu, Jing, et al.
Publicado: (2019)