Cargando…
Automatization and improvement of μCT analysis for murine lung disease models using a deep learning approach
BACKGROUND: One of the main diagnostic tools for lung diseases in humans is computed tomography (CT). A miniaturized version, micro-CT (μCT) is utilized to examine small rodents including mice. However, fully automated threshold-based segmentation and subsequent quantification of severely damaged lu...
Autores principales: | Birk, Gerald, Kästle, Marc, Tilp, Cornelia, Stierstorfer, Birgit, Klee, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245846/ https://www.ncbi.nlm.nih.gov/pubmed/32448249 http://dx.doi.org/10.1186/s12931-020-01370-8 |
Ejemplares similares
-
Deep learning enables pathologist-like scoring of NASH models
por: Heinemann, Fabian, et al.
Publicado: (2019) -
Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
por: Heinemann, Fabian, et al.
Publicado: (2018) -
Deep Learning–based Automatic Lung Segmentation on
Multiresolution CT Scans from Healthy and Fibrotic Lungs in Mice
por: Sforazzini, Francesco, et al.
Publicado: (2022) -
Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach
por: Sahoo, Prasan Kumar, et al.
Publicado: (2022) -
Deep Multi-Objective Learning from Low-Dose CT for Automatic Lung-RADS Report Generation
por: Chang, Yung-Chun, et al.
Publicado: (2022)