Cargando…
Genes that Control Vaccinia Virus Immunogenicity
The live smallpox vaccine was a historical first and highly effective vaccine. However, along with high immunogenicity, the vaccinia virus (VACV) caused serious side effects in vaccinees, sometimes with lethal outcomes. Therefore, after global eradication of smallpox, VACV vaccination was stopped. F...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
A.I. Gordeyev
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245956/ https://www.ncbi.nlm.nih.gov/pubmed/32477596 http://dx.doi.org/10.32607/actanaturae.10935 |
_version_ | 1783537853312008192 |
---|---|
author | Shchelkunov, S. N. Shchelkunova, G. A. |
author_facet | Shchelkunov, S. N. Shchelkunova, G. A. |
author_sort | Shchelkunov, S. N. |
collection | PubMed |
description | The live smallpox vaccine was a historical first and highly effective vaccine. However, along with high immunogenicity, the vaccinia virus (VACV) caused serious side effects in vaccinees, sometimes with lethal outcomes. Therefore, after global eradication of smallpox, VACV vaccination was stopped. For this reason, most of the human population worldwide lacks specific immunity against not only smallpox, but also other zoonotic orthopoxviruses. Outbreaks of diseases caused by these viruses have increasingly occurred in humans on different continents. However, use of the classical live VACV vaccine for prevention against these diseases is unacceptable because of potential serious side effects, especially in individuals with suppressed immunity or immunodeficiency (e.g., HIV-infected patients). Therefore, highly attenuated VACV variants that preserve their immunogenicity are needed. This review discusses current ideas about the development of a humoral and cellular immune response to orthopoxvirus infection/vaccination and describes genetic engineering approaches that could be utilized to generate safe and highly immunogenic live VACV vaccines. |
format | Online Article Text |
id | pubmed-7245956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | A.I. Gordeyev |
record_format | MEDLINE/PubMed |
spelling | pubmed-72459562020-05-28 Genes that Control Vaccinia Virus Immunogenicity Shchelkunov, S. N. Shchelkunova, G. A. Acta Naturae Research Article The live smallpox vaccine was a historical first and highly effective vaccine. However, along with high immunogenicity, the vaccinia virus (VACV) caused serious side effects in vaccinees, sometimes with lethal outcomes. Therefore, after global eradication of smallpox, VACV vaccination was stopped. For this reason, most of the human population worldwide lacks specific immunity against not only smallpox, but also other zoonotic orthopoxviruses. Outbreaks of diseases caused by these viruses have increasingly occurred in humans on different continents. However, use of the classical live VACV vaccine for prevention against these diseases is unacceptable because of potential serious side effects, especially in individuals with suppressed immunity or immunodeficiency (e.g., HIV-infected patients). Therefore, highly attenuated VACV variants that preserve their immunogenicity are needed. This review discusses current ideas about the development of a humoral and cellular immune response to orthopoxvirus infection/vaccination and describes genetic engineering approaches that could be utilized to generate safe and highly immunogenic live VACV vaccines. A.I. Gordeyev 2020 /pmc/articles/PMC7245956/ /pubmed/32477596 http://dx.doi.org/10.32607/actanaturae.10935 Text en Copyright ® 2020 National Research University Higher School of Economics. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shchelkunov, S. N. Shchelkunova, G. A. Genes that Control Vaccinia Virus Immunogenicity |
title | Genes that Control Vaccinia Virus Immunogenicity |
title_full | Genes that Control Vaccinia Virus Immunogenicity |
title_fullStr | Genes that Control Vaccinia Virus Immunogenicity |
title_full_unstemmed | Genes that Control Vaccinia Virus Immunogenicity |
title_short | Genes that Control Vaccinia Virus Immunogenicity |
title_sort | genes that control vaccinia virus immunogenicity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245956/ https://www.ncbi.nlm.nih.gov/pubmed/32477596 http://dx.doi.org/10.32607/actanaturae.10935 |
work_keys_str_mv | AT shchelkunovsn genesthatcontrolvacciniavirusimmunogenicity AT shchelkunovaga genesthatcontrolvacciniavirusimmunogenicity |