Cargando…
Self‐organizing cicada choruses respond to the local sound and light environment
1. Periodical cicadas exhibit an extraordinary capacity for self‐organizing spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the United States is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246199/ https://www.ncbi.nlm.nih.gov/pubmed/32489611 http://dx.doi.org/10.1002/ece3.6213 |
_version_ | 1783537892792991744 |
---|---|
author | Sheppard, Lawrence W. Mechtley, Brandon Walter, Jonathan A. Reuman, Daniel C. |
author_facet | Sheppard, Lawrence W. Mechtley, Brandon Walter, Jonathan A. Reuman, Daniel C. |
author_sort | Sheppard, Lawrence W. |
collection | PubMed |
description | 1. Periodical cicadas exhibit an extraordinary capacity for self‐organizing spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the United States is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge numbers and briefly dominate their ecosystem. During the emergence, the 17‐year periodical cicada species Magicicada cassini is found to form synchronized choruses, and we investigated their chorusing behavior from the standpoint of spatial synchrony. 2. Cicada choruses were observed to form in trees, calling regularly every five seconds. In order to determine the limits of this self‐organizing behavior, we set out to quantify the spatial synchronization between cicada call choruses in different trees, and how and why this varies in space and time. 3. We performed 20 simultaneous recordings in Clinton State Park, Kansas, in June 2015 (Brood IV), with a team of citizen‐science volunteers using consumer equipment (smartphones). We use a wavelet approach to show in detail how spatially synchronous, self‐organized chorusing varies across the forest. 4. We show how conditions that increase the strength of audio interactions between cicadas also increase the spatial synchrony of their chorusing. Higher forest canopy light levels increase cicada activity, corresponding to faster and higher‐amplitude chorus cycling and to greater synchrony of cycles across space. We implemented a relaxation‐oscillator‐ensemble model of interacting cicadas, finding that a tendency to call more often, driven by light levels, results in all these effects. 5. Results demonstrate how the capacity to self‐organize in ecology depends sensitively on environmental conditions. Spatially correlated modulation of cycling rate by an external driver can also promote self‐organization of phase synchrony. |
format | Online Article Text |
id | pubmed-7246199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72461992020-06-01 Self‐organizing cicada choruses respond to the local sound and light environment Sheppard, Lawrence W. Mechtley, Brandon Walter, Jonathan A. Reuman, Daniel C. Ecol Evol Original Research 1. Periodical cicadas exhibit an extraordinary capacity for self‐organizing spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the United States is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge numbers and briefly dominate their ecosystem. During the emergence, the 17‐year periodical cicada species Magicicada cassini is found to form synchronized choruses, and we investigated their chorusing behavior from the standpoint of spatial synchrony. 2. Cicada choruses were observed to form in trees, calling regularly every five seconds. In order to determine the limits of this self‐organizing behavior, we set out to quantify the spatial synchronization between cicada call choruses in different trees, and how and why this varies in space and time. 3. We performed 20 simultaneous recordings in Clinton State Park, Kansas, in June 2015 (Brood IV), with a team of citizen‐science volunteers using consumer equipment (smartphones). We use a wavelet approach to show in detail how spatially synchronous, self‐organized chorusing varies across the forest. 4. We show how conditions that increase the strength of audio interactions between cicadas also increase the spatial synchrony of their chorusing. Higher forest canopy light levels increase cicada activity, corresponding to faster and higher‐amplitude chorus cycling and to greater synchrony of cycles across space. We implemented a relaxation‐oscillator‐ensemble model of interacting cicadas, finding that a tendency to call more often, driven by light levels, results in all these effects. 5. Results demonstrate how the capacity to self‐organize in ecology depends sensitively on environmental conditions. Spatially correlated modulation of cycling rate by an external driver can also promote self‐organization of phase synchrony. John Wiley and Sons Inc. 2020-04-20 /pmc/articles/PMC7246199/ /pubmed/32489611 http://dx.doi.org/10.1002/ece3.6213 Text en © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Sheppard, Lawrence W. Mechtley, Brandon Walter, Jonathan A. Reuman, Daniel C. Self‐organizing cicada choruses respond to the local sound and light environment |
title | Self‐organizing cicada choruses respond to the local sound and light environment |
title_full | Self‐organizing cicada choruses respond to the local sound and light environment |
title_fullStr | Self‐organizing cicada choruses respond to the local sound and light environment |
title_full_unstemmed | Self‐organizing cicada choruses respond to the local sound and light environment |
title_short | Self‐organizing cicada choruses respond to the local sound and light environment |
title_sort | self‐organizing cicada choruses respond to the local sound and light environment |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246199/ https://www.ncbi.nlm.nih.gov/pubmed/32489611 http://dx.doi.org/10.1002/ece3.6213 |
work_keys_str_mv | AT sheppardlawrencew selforganizingcicadachorusesrespondtothelocalsoundandlightenvironment AT mechtleybrandon selforganizingcicadachorusesrespondtothelocalsoundandlightenvironment AT walterjonathana selforganizingcicadachorusesrespondtothelocalsoundandlightenvironment AT reumandanielc selforganizingcicadachorusesrespondtothelocalsoundandlightenvironment |