Cargando…

Aging and disease-relevant gene products in the neuronal transcriptome of the great pond snail (Lymnaea stagnalis): a potential model of aging, age-related memory loss, and neurodegenerative diseases

Modelling of human aging, age-related memory loss, and neurodegenerative diseases has developed into a progressive area in invertebrate neuroscience. Gold standard molluscan neuroscience models such as the sea hare (Aplysia californica) and the great pond snail (Lymnaea stagnalis) have proven to be...

Descripción completa

Detalles Bibliográficos
Autores principales: Fodor, István, Urbán, Péter, Kemenes, György, Koene, Joris M., Pirger, Zsolt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246240/
https://www.ncbi.nlm.nih.gov/pubmed/32449011
http://dx.doi.org/10.1007/s10158-020-00242-6
Descripción
Sumario:Modelling of human aging, age-related memory loss, and neurodegenerative diseases has developed into a progressive area in invertebrate neuroscience. Gold standard molluscan neuroscience models such as the sea hare (Aplysia californica) and the great pond snail (Lymnaea stagnalis) have proven to be attractive alternatives for studying these processes. Until now, A. californica has been the workhorse due to the enormous set of publicly available transcriptome and genome data. However, with growing sequence data, L. stagnalis has started to catch up with A. californica in this respect. To contribute to this and inspire researchers to use molluscan species for modelling normal biological aging and/or neurodegenerative diseases, we sequenced the whole transcriptome of the central nervous system of L. stagnalis and screened for the evolutionary conserved homolog sequences involved in aging and neurodegenerative/other diseases. Several relevant molecules were identified, including for example gelsolin, presenilin, huntingtin, Parkinson disease protein 7/Protein deglycase DJ-1, and amyloid precursor protein, thus providing a stable genetic background for L. stagnalis in this field. Our study supports the notion that molluscan species are highly suitable for studying molecular, cellular, and circuit mechanisms of the mentioned neurophysiological and neuropathological processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10158-020-00242-6) contains supplementary material, which is available to authorized users.