Cargando…
Turbidity in Combined Sewer Sewage: An Identification of Stormwater Detention Tanks
Combined sewer overflow remains a major threat to surface water quality. A stormwater detention tank is an effective facility to control combined sewer overflow. In this study, a new method for the selective collection of combined sewer sewage during wet weather based on real-time turbidity control...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246549/ https://www.ncbi.nlm.nih.gov/pubmed/32353994 http://dx.doi.org/10.3390/ijerph17093053 |
Sumario: | Combined sewer overflow remains a major threat to surface water quality. A stormwater detention tank is an effective facility to control combined sewer overflow. In this study, a new method for the selective collection of combined sewer sewage during wet weather based on real-time turbidity control is established to reduce the load of pollutants entering a river using a stormwater detention tank with a limited volume. There was a good correlation found between turbidity and the concentrations of total suspended solids (TSS) (R(2) = 0.864, p < 0.05), total phosphorus (TP) (R(2) = 0.661, p < 0.01), and chemical oxygen demand (COD) (R(2) = 0.619, p < 0.01). This study shows that turbidity can be used to indicate the concentration of TSS, TP, and COD in the sewage of the combined sewer systems in wet weather. Based on the adopted first flush detection approach, total nitrogen (TN) and TP showed the first flush effect, whereas the first flush effect of TSS and COD was not obvious. The results show that it is impossible to effectively control combined sewer overflow by only treating the initial rainwater. |
---|