Cargando…
Past, Present, and Future Vulnerability to Dengue in Jamaica: A Spatial Analysis of Monthly Variations
Over the years, Jamaica has experienced sporadic cases of dengue fever. Even though the island is vulnerable to dengue, there is paucity in the spatio-temporal analysis of the disease using Geographic Information Systems (GIS) and remote sensing tools. Further, access to time series dengue data at t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246587/ https://www.ncbi.nlm.nih.gov/pubmed/32369951 http://dx.doi.org/10.3390/ijerph17093156 |
Sumario: | Over the years, Jamaica has experienced sporadic cases of dengue fever. Even though the island is vulnerable to dengue, there is paucity in the spatio-temporal analysis of the disease using Geographic Information Systems (GIS) and remote sensing tools. Further, access to time series dengue data at the community level is a major challenge on the island. This study therefore applies the Water-Associated Disease Index (WADI) framework to analyze vulnerability to dengue in Jamaica based on past, current and future climate change conditions using three scenarios: (1) WorldClim rainfall and temperature dataset from 1970 to 2000; (2) Climate Hazard Group InfraRed Precipitation with Station data (CHIRPS) rainfall and land surface temperature (LST) as proxy for air temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2002 to 2016, and (3) maximum temperature and rainfall under the Representative Concentration Pathway (RCP) 8.5 climate change scenario for 2030. downscaled at 25 km based on the Regional Climate Model, RegCM4.3.5. Although vulnerability to dengue varies spatially and temporally, a higher vulnerability was depicted in urban areas in comparison to rural areas. The results also demonstrate the possibility for expansion in the geographical range of dengue in higher altitudes under climate change conditions based on scenario 3. This study provides an insight into the use of data with different temporal and spatial resolution in the analysis of dengue vulnerability. |
---|